

Verigene[®] Gram-Negative Blood Culture Nucleic Acid Test (BC-GN)

Rx Only

REF 20-005-021 (Test Kit) • 20-012-021 (Utility Kit)

KEY-CODE NAN021

INTENDED USE

The Verigene[®] Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) performed using the sample-toresult Verigene[®] System, is a qualitative multiplexed *in vitro* diagnostic test for the simultaneous detection and identification of selected gram-negative bacteria and resistance markers. **BC-GN** is performed directly on blood culture media using blood culture bottles identified as positive by a continuous monitoring blood culture system and which contain gram-negative bacteria as determined by Gram stain.

BC-GN detects and identifies the following:

Bacterial Genera and Species	Resistance Markers			
Acinetobacter spp. Citrobacter spp. Enterobacter spp. Proteus spp. Escherichia coli ¹ Klebsiella pneumoniae Klebsiella oxytoca Pseudomonas aeruginosa	CTX-M (bla_{CTX-M}) KPC (bla_{KPC}) NDM (bla_{NDM}) VIM (bla_{VIM}) IMP (bla_{IMP}) OXA (bla_{OXA})			

BC-GN will not distinguish Escherichia coli from Shigella spp. (S. dysenteriae, S. flexneri, S. boydii, and S. sonnei)

BC-GN is indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of bacterial bloodstream infections; however, is not used to monitor these infections. Sub-culturing of positive blood cultures is necessary to recover organisms for antimicrobial susceptibility testing (AST), for identification of organisms not detected by **BC-GN**, to detect mixed infections that may not be detected by **BC-GN**, for association of antimicrobial resistance marker genes to a specific organism, or for epidemiological typing.

BACKGROUND INFORMATION

Bloodstream infection (BSI) occurs when a pathogenic microorganism, such as a gram-negative bacterium, enters the bloodstream. **BC-GN** is a multiplex, automated nucleic acid test for the identification of the genus, species, and genetic antimicrobial resistance determinants for a selected panel of the most common gram-negative blood culture bacteria. While detection of BSI with conventional microbiological methods may require 2-4 days to produce bacterial identification and resistance results, **BC-GN** provides results within 2 hours of blood culture positivity.

The Verigene System's unique instrumentation allows for random access test processing, enabling on-demand testing directly from positive blood culture bottles without the need for batched testing. A brief description of the organisms detected by **BC-GN** ("**BC-GN** panel members") and their clinical relevance follows.

Acinetobacter spp. is a genus of bacteria that are strictly aerobic nonfermentative gram-negative bacilli. Species of *Acinetobacter* exhibit a broad degree of antibiotic resistance, including inherent resistance to many classes of antibiotics such as penicillin, chloramphenicol, and often aminoglycosides.¹ Increasingly recognized as a major pathogen causing nosocomial infection, including bacteremia, *Acinetobacter baumannii* is emerging as a cause of numerous global outbreaks due to multi-drug-resistant (MDR) strains, making it very difficult to treat. In *A. baumannii*, carbapenem resistance may result from carbapenemases such as OXA class D beta-lactamases, metallo-beta-lactamases (MBLs), and the Ambler class A *K. pneumonia*e carbapenemases (KPCs).^{2,3,4}

Citrobacter spp. is a genus of gram-negative bacteria belonging to the family *Enterobacteriaceae* that are found in soil, water, and wastewater. This bacterium is an opportunistic pathogen that is rarely the source of illness, except for infections of the urinary tract, infant meningitis, and sepsis.⁵ A high degree of antibiotic resistance is noteworthy for *Citrobacter freundii* and *Citrobacter koseri*. Numerous international molecular studies have described the occurrence of various CTX-M types in *Citrobacter* spp.. KPC-harboring isolates have been described in the United States, Asia, and Europe.^{6,7,8,9}

Enterobacter spp. is a genus of gram-negative bacteria also belonging to the family *Enterobacteriaceae* that are an opportunistic cause of nosocomial bloodstream infections. Several strains of *Enterobacter* are pathogenic and cause infections in immunocompromised patients and those that require mechanical ventilators. The two clinically relevant species of *Enterobacter* are *Enterobacter* aerogenes and *Enterobacter cloacae*. Various resistance mechanisms have been described in *Enterobacter*, including production of carbapenemases and other extended-spectrum beta-lactamases (ESBLs).^{10,11}

Proteus spp. is a genus of gram-negative bacteria belonging to the family *Enterobacteriaceae* that are an opportunistic human pathogen commonly found in decomposing animal matter, sewage, and human and animal feces. Three species are opportunistic human pathogens: *Proteus mirabilis*, *Proteus vulgaris*, and *Proteus penneri*. *Proteus mirabilis* is the most common *Proteus* species isolated in blood. Like many members of the family *Enterobacteriaceae*, *Proteus* spp. can harbor numerous antimicrobial resistance determinants, including ESBL. Carbapenem resistance mediated by carbapenemases such as OXA, MBL and KPC has been reported.¹²

Escherichia coli is a gram-negative bacterium belonging to the family *Enterobacteriaceae* that is the most common cause of gram-negative bloodstream infections.¹³ Most strains of *E. coli* are harmless and part of the normal flora of the gut. Virulent strains of *E. coli* can cause gastroenteritis, urinary tract infections, and in rarer cases, hemolytic-uremic syndrome and septicemia.¹⁴ This bacterium is associated with significant mortality if it reaches the bloodstream and is responsible for approximately 8% of all bloodstream infections.¹³ *E. coli* may produce ESBL, KPC, OXA-48, or NDM-1.

Klebsiella pneumoniae is a gram-negative bacterium belonging to the family *Enterobacteriaceae* and is clinically the most significant member of the *Klebsiella* genus. *Klebsiella pneumoniae* is closely related to *Klebsiella oxytoca*, through which it is distinguished by being indole-negative and by its ability to grow on both melezitose and 3-hydroxybutyrate. The most common infection caused by *Klebsiella pneumoniae* is pneumonia, typically in the form of bronchopneumonia and bronchitis, but can also escalate to septicemia. Feces are the most significant source of patient infection, followed by contact with contaminated instruments. This bacterium may produce KPC, OXA, or NDM-1. Carbapenemase-producing *Klebsiella pneumoniae* is an emerging challenge in health-care settings, with a progressive increase seen worldwide over the past 10 years. Carbapenem-resistant *Klebsiella pneumoniae* are resistant to almost all available antimicrobial agents and these infections have caused high rates of morbidity and mortality.¹⁵

Klebsiella oxytoca is a gram-negative bacteria belonging to the family *Enterobacteriaceae* that is found in a wide range of environments and are opportunistic in nature. Most infections with *Klebsiella oxytoca* are nosocomial, with outbreaks occurring in immunocompromised patients being treated with antibiotics. *Klebsiella oxytoca* has increasingly been present in the blood samples of infants with neonatal septicemia.¹⁶ These bacterium can produce KPCs.

Pseudomonas aeruginosa is a gram-negative bacterium that is an opportunistic human pathogen commonly found in soil, water, skin flora, and most man-made environments. *Pseudomonas aeruginosa* is the third most common causative pathogen of gram-negative bloodstream infections and has higher virulence than *Klebsiella* species. Patients with septic shock caused by *Pseudomonas aeruginosa* display a purple-black skin lesion *ecthyma gangrenosum*. *P. aeruginosa* shows a high level of intrinsic resistance to antimicrobial drugs and an ability to become even more drug resistant. These bacteria can acquire resistance with KPC and ESBL production. In addition, outbreaks by MBL-producing *P. aeruginosa* have been documented in hospitals in several countries, with VIM being the most dominant MBL variant worldwide.¹⁷

The treatment of serious bacterial infections in clinical practice is often complicated by antibiotic resistance. Resistance rates are increasing among several problematic gram-negative pathogens that are often responsible for serious nosocomial infections, including *Acinetobacter* spp., *Pseudomonas aeruginosa*, and *Enterobacteriaceae*. The presence of multi-resistant strains of these organisms has been associated with prolonged hospital stays, higher health care costs, and increased mortality.¹⁹ A brief description of the genetic resistance determinants detected by **BC-GN** follows.

CTX-M: CTX-M-type enzymes are a group of class A ESBLs that are rapidly spreading among *Enterobacteriaceae* worldwide, replacing TEM-type and SHV-type ESBLs as the predominant ESBLs in many countries. Some carbapenemases have become associated with strains that have great epidemic potential, spreading across countries and continents. ^{22,23,24} This enzyme is acquired through the plasmid acquisition of beta-lactamase genes rather than via genetic mutation. There are more than 80 CTX-M enzymes that have been identified. ^{20,21}

KPC: The class A KPC has rapidly spread in the United States and is increasing elsewhere in the world. At least ten variants have been identified and are distinguished by 1-2 amino acid substitutions.⁸ Class B metallo-beta-lactamases (MBLs) of the IMP, VIM, and NDM types have been reported worldwide, and their genes are carried by plasmids and integrons, hydrolyzing all beta-lactams with the exception of aztreonam.²⁵

NDM: New Delhi metallo-beta-lactamase (NDM) is a novel broad spectrum carbapenemase. Since its first description, NDM carbapenemases--with NDM-1 presenting as the dominant type--has been reported from many countries worldwide. NDM enzymes are present largely in *Enterobacteriaceae*, but also in non-fermenters.^{26,27,28}

VIM: Verona integron-encoded metallo-beta-lactamase (VIM) belongs to a growing family of carbapenemase enzymes that includes at least 10 known members, of which VIM-2 is the predominant variety. VIM enzymes have been found mainly in non-fermenting gram-negative bacteria such as *Pseudomonas aeruginosa*, but their numbers are increasing in *Enterobacteriaceae*.²⁵

IMP: Imipenem-resistant metallo-beta-lactamase (IMP) is a plasmid mediated IMP-type carbapenemase, with at least 17 known varieties. IMP enzymes are most frequently seen in *Pseudomonas* and *Acinetobacter* species.

OXA: Class D beta-lactamases are also called oxacillinases, or OXA-type beta-lactamases (OXAs). Genes encoding OXAs are known to be intrinsic in many gram-negative rods, including *Acinetobacter baumannii* and *Pseudomonas aeruginosa*, but play a minor role in natural resistance phenotypes. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. None of these carbapenem-hydrolyzing class D beta-lactamases (CHDLs) significantly hydrolyze expanded-spectrum cephalosporins, therefore indicating that currently known OXAs are unable to combine extended-spectrum and carbapenem-hydrolyzing properties. Three groups of acquired CHDLs (OXA-23-like, OXA-40-like, and OXA-58-like) have been identified in *Acinetobacter* species. OXA-48-like enzymes, another CHDL, are mostly identified in *K. pneumoniae* and *E. coli*, but also in various other enterobacterial species.^{29,30,31}

PRINCIPLES AND PROCEDURES OF BC-GN AND THE VERIGENE SYSTEM

BC-GN is performed using the Verigene System, which is a bench-top sample-to-result molecular diagnostics workstation consisting of two modules: the Verigene[®] Processor *SP* and the Verigene[®] Reader. The Verigene Processor *SP* automates the **BC-GN** sample analysis steps including: (i) Specimen Preparation - cell lysis and magnetic bead-based nucleic acids extraction from positive blood culture specimens and (ii) Hybridization— bacterial DNA hybridization to target specific capture DNA in a microarray format and mediator and gold-nanoparticle probe hybridization to captured bacterial nucleic acids. Silver enhancement of the bound gold nanoparticle probes at the capture sites results in gold-silver aggregates that are imaged optically with high efficiency by the Verigene Reader. The Verigene Reader also serves as the user interface and central control unit for the Verigene System, storing and tracking information throughout the assay process.

The Verigene Processor *SP* utilizes single-use consumables to perform **BC-GN**, including an Extraction Tray, Utility Tray, and Test Cartridge. A separate Tip Holder Assembly contains two pipette tips that are used to transfer and mix reagents during the assay. The user tests a specimen by loading the single-use disposables into the Verigene Processor *SP*, pipetting the specimen into the Extraction Tray, and initiating the protocol on the Verigene Reader by scanning or entering the Test Cartridge ID and specimen information. Following assay completion, the user inserts the substrate slide portion of the Test Cartridge into the Verigene Reader for optical analysis and generation of **BC-GN** test results.

MATERIALS PROVIDED

Verigene[®] **BC-GN** Test Kit (Catalog number **20-005-021**)

- 20 Verigene[®] BC-GN Test Cartridges
 Each Test Cartridge comes preloaded with all required reaction solutions, including wash solutions, oligonucleotide probe solution and signal amplification solutions required to generate a test result. The Test Cartridges are labeled as: BC-GN; 20-006-021
- 20 Verigene[®] **BC-GN** Extraction Trays (with Tip Holder Assemblies)
 - Each Extraction Tray comes preloaded with all required solutions, including lysis/binding buffer, digestion enzymes, wash solutions, and buffer solutions necessary to extract nucleic acids and generate a test result. The Extraction Trays (with Tip Holder Assemblies) are contained within a carrier labeled as: **BC-GN**; 20-009-021
- 20 Verigene[®] Sample Well Caps
 The Sample Well Caps come packaged in strips of 5 Caps. The Sample Well Caps are contained within
 a plastic bag labeled as: 40-001-001
- Verigene[®] **BC-GN** Test Utility Kit (Catalog number **20-012-021**)
 - 20 Verigene[®] BC-GN Utility Trays Each Utility Tray comes preloaded with an Internal Processing Control. The Utility Trays are contained within a carrier labeled as: BC-GN; 20-011-021

MATERIALS NEEDED BUT NOT PROVIDED

- Instruments and Equipment
 - Verigene Reader; Catalog number 10-0000-02
 - Verigene Processor SP; Catalog number 10-0000-07
 - 2–8 °C Refrigerator
 - ≤-20 °C Freezer
 - Automated blood culture monitoring system
 - Micro-pipettors & tips
 - Vortex mixer
 - Biological Safety Cabinet (BSC) (Optional)
 - Cartridge cover opener (Optional)
 - Verigene[®] Extraction Tray Holder; Catalog number 421-00019-01 (Optional)
 - ≤-70 °C freezer (Optional)

Consumables and Reagents

- Blood culture bottles
- Gram staining reagents

REAGENT STORAGE, HANDLING, STABILITY

Component	Storage Conditions	Comments
Extraction Tray	2–8 ℃	
Test Cartridge	2-0 0	Do not freeze.
Tip Holder Assembly	2–30 ℃	
Sample Well Caps		
Utility Tray	≤-20 °C	Shipped frozen. Upon receipt, store frozen. Avoid multiple freeze/thaw cycles.

VERIGENE DAILY MAINTENANCE

A. Work Area Preparation

Each day of testing and before and after sample preparation, prepare the testing work area by sanitizing the BSC (if utilized), countertops, vortex mixers, micro-pipettors, and any other equipment used for sample processing with a lint-free decontaminating wipe.

B. Verigene System Cleaning

Prior to the start of testing each day, perform the following steps for each instrument used for testing.

While wearing fresh gloves, use a lint-free decontaminating wipe to thoroughly wipe the drawer assembly of the Verigene Processor *SP*. For the Verigene Reader, wipe down the user Touchscreen, Barcode Scanner and the door of the Analysis Compartment. It is not necessary to change gloves between instruments; however, do not use the same lint-free decontaminating wipe to clean different instruments.

Please refer to the Verigene System User's Manual for additional details on performing tests on the Verigene System as well as routine and daily maintenance.

METHODS

A. Specimen Collection, Processing and Storage

Inadequate or inappropriate specimen collection, storage, or transport may yield false-negative results. Due to the importance of specimen quality, training of personnel in the correct manner to perform specimen collection and handling is highly recommended.

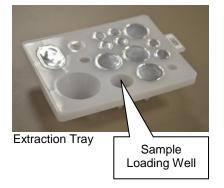
- 1. Draw blood using aseptic techniques into the blood culture bottle following manufacturer's instructions.
- 2. Incubate the bottle in an automated blood culture monitoring system until the bottle is flagged positive for microbial growth following manufacturer's instructions.
- 3. When the bottle is positive for microbial growth, perform a Gram stain.
- 4. For gram-negative bacteria, test 700 μL of the blood culture media using **BC-GN**. Ensure the blood culture bottle is thoroughly mixed by inverting several times (≥4) before retrieving test sample volume.
- Sub-culturing of positive blood cultures is necessary to recover organisms for AST, for identification of organisms not detected by BC-GN, to detect mixed infections that may not be detected by BC-GN, for association of antimicrobial resistance marker genes to a specific organism, or for epidemiological typing.
- Positive blood culture bottle media can be stored at 2-37 °C for up to 24 hours after bottle positivity prior to testing.

B. <u>Test Procedure</u>

- 1. Test set up—after Specimen Processing
 - a) Remove an Extraction Tray, Tip Holder Assembly and Test Cartridge from the refrigerator. Remove a Utility Tray from the freezer and begin test run within 30 minutes.

Note: for Utility Trays stored at temperatures <-20 °C, thaw the tray at room temperature for at least 10 minutes prior to beginning test run.

Optional Cap Protocol:


- *i.* Remove one cap from the strip of Sample Well Caps and place inside the BSC.
- ii. Place the Extraction Tray in the Extraction Tray Holder inside the BSC. (Refer to image below for Extraction Tray Holder)

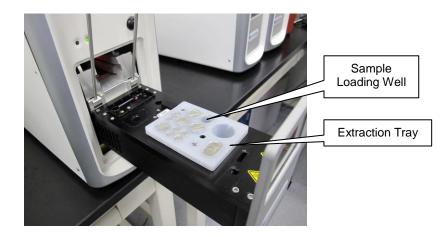
iii. Pipette 700 μL of the prepared sample into the bottom of the Sample Loading Well in the Extraction Tray. (Refer to image below for Sample Loading Well location).

Extraction Tray Holder

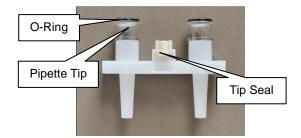
iv. After sample loading, place the Sample Well Cap over the Sample Loading Well. Take precaution to handle only the edges of the Cap and firmly press down until the Cap is fully inserted into the Sample Loading Well.

Sample Well Cap in Packaging

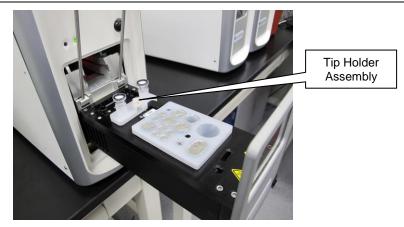
Pressing down on edges of cap


Extraction Tray with cap inserted

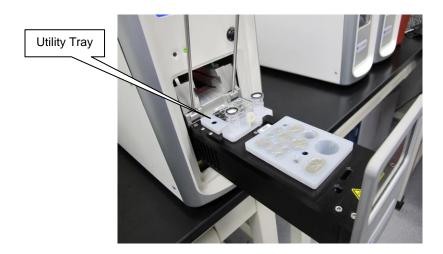
- v. Take the Extraction Tray out of the BSC and insert into the Extraction Tray Module on the SP.
- b) The image below shows an empty Verigene Processor *SP*. Open the Drawer Assembly by pressing the black OPEN/CLOSE button located on the front of the Verigene Processor *SP*. Open the Drawer Clamp by pressing in the silver latch and lifting the Drawer Clamp prior to loading the consumables.

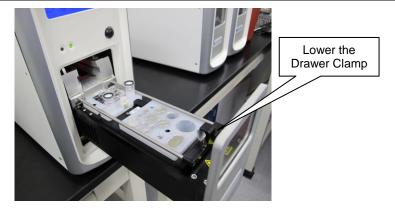


- 2. Loading the Extraction Tray
 - a) (optional) Prior to loading the Extraction Tray, thoroughly shake the Extraction Tray to resuspend the magnetic beads that have settled during storage. Check for complete resuspension by visually inspecting the well containing the beads. The well containing the magnetic beads is easily distinguished, as the beads are black in color. Following adequate resuspension, gently tap the tray on the bench to ensure that the reagents settle to the bottom of each well.
 - b) The Extraction Tray can only be loaded in one location and orientation in the Drawer Assembly. When the Extraction Tray is loaded correctly, the Sample Loading Well is located at the right hand side of the Drawer Assembly. Place the Extraction Tray in the Drawer Assembly and press down on the corners of the tray to ensure it is level. The image below shows a properly loaded Extraction Tray.



- 3. Loading the Tip Holder Assembly
 - a) The Tip Holder Assembly is a plastic holder that contains two Pipette Tips and a rubber Tip Seal. Each Pipette Tip contains an O-ring on top.


- b) Before using the Tip Holder Assembly, check the top of each Pipette Tip for the O-ring and confirm that the rubber Tip Seal is sitting straight and flush between the tips. If either is missing, replace with a new Tip Holder Assembly.
- c) Insert the Tip Holder Assembly into the Drawer Assembly. The image below shows a properly loaded Tip Holder Assembly. The Tip Holder Assembly can only be loaded in one location and orientation in the Drawer Assembly. For orientation, there are two holes on the deck of the Drawer Assembly that fit each Pipette Tip and the opening to the Tip Seal should face away from Processor SP.


4. Loading the Utility Tray

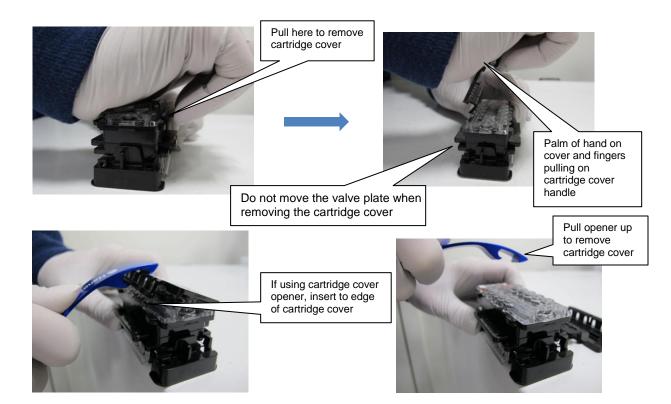
- a) (optional) Thaw the Utility Tray at room temperature for at least 10 minutes.
- b) (optional) After thawing, gently vortex (less than 5 seconds) the Utility Tray.
- c) (optional) Gently tap the tray on the bench to settle the reagents.
- Insert the Utility Tray into the Drawer Assembly. The image below shows a properly loaded Utility Tray. The Utility Tray can only be loaded in one location and orientation in the Drawer Assembly. When loaded properly, the tray sits flat.

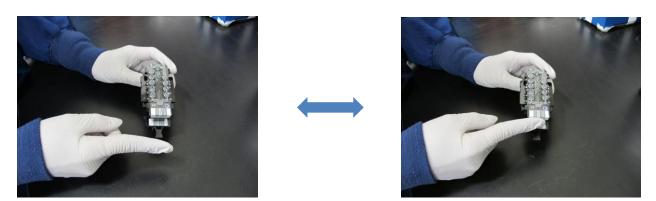
e) Lower and latch the Drawer Clamp over the Trays while supporting the Drawer with the opposite hand. The image below shows a closed Drawer Clamp over properly loaded trays and Tip Holder Assembly. The Drawer Clamp will latch onto the Drawer Assembly when closed properly, and the user will be unable to lift the Drawer Clamp without pressing in the silver latch.

- 5. Ordering a Test
 - a) All tests must be ordered through the Verigene Reader. No tests can be processed on the Verigene Processor *SP* without the user entering the Test Cartridge ID and Sample ID into the Verigene Reader.
 - i. Login to the Verigene Reader.
 - To start a new Session, proceed to the next step (iii). To order a test in a previously created session, select the desired Session from the drop down 'SESSION' menu, then proceed to step (v).

Note: Up to 60 cartridges can be entered into a single session.

- iii. From the Menu Bar, SESSION tab, select Start New Session where the Session Setup window will appear.
- iv. Touch Session ID button and enter information by using the data entry keyboard. The Session ID can be any unique identifier in a format defined by the laboratory. The operator ID is automatically entered as the currently logged in 'user'.
- v. Touch the Processing tab on the Navigation Bar at the bottom of the screen.
- b) Enter the Test Cartridge ID by scanning the barcode using the barcode scanner attached to the Reader. The user may manually enter the Test Cartridge ID by selecting MENU and 'Enter Barcode' and then keying in the Test Cartridge ID number with the Reader's keyboard.
- c) *(optional)* Scan the Test Cartridge Cover's 2D barcode using a barcode gun-style scanner to display the Test Cartridge's Reference Number, Expiration Date, and Lot Number on reports.


Note: The wand-style barcode scanner will not read 2D barcodes.


6. Loading a Test Cartridge

a) Hold the Test Cartridge by the handle with one hand, using the other hand apply pressure with the palm of the hand and remove the cartridge cover by bending the cover away and over the Reagent Pack edge. Ensure that the valve plate is not moved during cover removal (see illustration below).

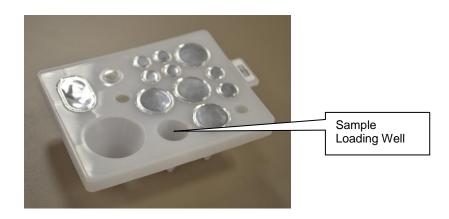
Do not remove the Test Cartridge cover until immediately prior to inserting the Test Cartridge into the Processor *SP*.

b) (optional) Settle the reagents in the cartridge before loading into the Processor SP. The optimal method for settling the reagents is to hold the reagent pack portion of the Test Cartridge on the side opposite the handle and tap the barcode end of the Cartridge with your index finger. When tapping the cartridge, allow the force of the tapping to move the cartridge and your right hand. The tapping is more effective when the cartridge is held in the air so that it moves slightly.

c) Insert the Test Cartridge into the Hybridization Module of the Processor SP until it reaches a stopping point. The image below shows the user loading a Test Cartridge into the Verigene Processor SP.

Note: If the Test Cartridge is not inserted properly, the Processor *SP* will display a message on the information screen when the user attempts to close the Drawer Assembly.

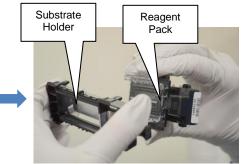
- 7. Loading the Sample
 - a) Enter the Sample ID by scanning or manually enter the Sample ID using the Reader's touchscreen keyboard. Press Yes to confirm the Sample ID. Ensure the Extraction and Hybridization options are selected (see image below).



b) In the subsequent dialogue box, select or de-select the bacteria species or resistance marker from the list to activate or de-activate results reporting for those targets. Press Yes to confirm. The Verigene Reader will automatically default to the selected targets for the next test run.

Note: Once a test run is started, results for de-selected targets cannot be retrieved.

c) Gently vortex the gram-negative blood culture sample and pipette 700 µL of the gram-negative blood culture sample into the bottom of the Sample Loading Well in the Extraction Tray (refer to image below for Sample Loading Well location).



- d) Close the Drawer Assembly by pressing the OPEN/CLOSE button on the Processor *SP*. The Processor will automatically verify that each consumable is properly loaded and begin sample processing.
- e) Confirm countdown has started on the Processor SP display screen before leaving the area.
- f) In order to set up additional tests on other Processor SP instruments follow the same procedure. To avoid contamination and sample mix-ups, set up one test at a time, change gloves after handling a sample, and decontaminate micro-pipettors and sample tubes between tests.

- 8. Upon completion of a test run
 - a) The Verigene Reader will generate a ring to notify the user when the test is completed and the Processor SP will display a message indicating "Procedure Complete. Ready to Open Drawer." Remove the Test Cartridge from the Processor SP upon completion or within 12 hours of test completion.
 - b) Open the Drawer Assembly by pressing the OPEN/CLOSE button.
 - c) Remove the Test Cartridge and immediately orient to its side.
 - d) While keeping the Test Cartridge on its side, separate the Reagent Pack.

- 9. Analyzing results
 - a) Remove the protective tape from the back of the slide in the Substrate Holder.

b) Use the Reader's barcode scanner to read the barcode on the Substrate Holder. When the barcode is accepted, a prompt to load the Substrate Holder into the Reader will be displayed.

c) Immediately insert the Substrate Holder into the Reader.

- d) Scanning the barcode ensures that the test result is associated with the correct sample. When the load substrate prompt occurs, it will only display for 20 seconds. The analysis will only start if the substrate is loaded during the animated prompt.
- e) To properly insert the Substrate Holder into the Reader, hold the Substrate Holder by the handle with the barcode facing away from you. Next, insert the Substrate Holder into the Analysis Compartment. The compartment is designed to place the Holder in the correct position. Do not force the Substrate Holder in, but do insert it into the compartment as far as it will go comfortably. Close the door of the Analysis Compartment.
- f) The analysis will automatically begin. A small camera icon will appear on the Reader to indicate that analysis has begun.
- g) Once the analysis is completed by the Reader, the camera icon will be replaced with an upward facing arrow and the Reader rings.
- h) Confirm that a result other than 'No Call--NO GRID' has been generated by touching the substrate icon for the test. A Substrate producing a 'No Call--NO GRID' result should be reanalyzed.
- i) Once the scan is complete, dispose of the used Test Substrate.

10. Printing results

- a) Touch the substrate icon in the Session's Processing screen. A window displaying the results will open; touch the 'Print' option on this screen to print a Detail Report.
- b) A Summary Report is available by moving to the Results screen of the Session on the bottom Navigation Bar; go to MENU then select 'Print Summary'. The Summary Report will provide the results for all Tests processed within the current Session.
- c) Detail Reports can also be viewed and printed from the Results window. First, select the desired Test from the list, go to MENU and then touch 'Print Detail'.

INTERPRETATION OF RESULTS

BC-GN provides a qualitative result for the presence ("Detected") or absence ("Not Detected") of the **BC-GN** bacterial targets and antimicrobial resistance markers as listed in **Table 1**. The image analysis of the Test Substrate provides light signal intensities from the target-specific capture spots as well as the negative control, background, and imaging control spots. The mean signal intensity of a target is compared to the assay's signal detection threshold to make a call. **Table 1** below lists the possible test results generated by **BC-GN**, representing identification of bacterial nucleic acid sequences/targets. *Please note that BC-GN will only report resistance marker gene results when an organism is also detected by the assay.*

Organism/Resistance	Target	Test Result Reported as "Detected"					
Marker	Gene	Genus	Species	Resistance Marker**			
Acinetobacter spp	rpsA	Acinetobacter	-	-			
Citrobacter spp.	ompA/mrkC	Citrobacter	-	-			
Enterobacter spp.	gyrB/metB	Enterobacter	-	-			
Proteus spp.	atpD	Proteus	-	-			
Escherichia coli	oppA	-	E. coli*	-			
Klebsiella pneumoniae	yggE	-	K. pneumoniae	-			
Klebsiella oxytoca	ompA	-	K. oxytoca	-			
Pseudomonas aeruginosa	sodA	-	P. aeruginosa	-			
CTX-M	CTX-M			CTX-M			
KPC	KPC			KPC			
NDM	NDM		obacter, Citrobacter, er, Proteus, E. coli,	NDM			
VIM	VIM	K. pneumo	niae, K. oxytoca, and/or P.	VIM			
IMP	IMP	aeruginosa		IMP			
OXA	OXA			OXA			
All Analytes "Not Detected"	-	-	-	-			

* Specimens containing Shigella spp. and/or E. coli will be reported as "E. coli Detected".

** A Not Detected result for any of the antimicrobial resistance markers does not indicate susceptibility, as resistance may occur by other mechanisms. Sub-culturing and AST testing is required in order to assign a resistant and/or susceptible phenotype to each isolate recovered from the blood culture sample.

Error calls related to an invalid test are listed in **Table 2**, together with the appropriate recourse, which should be taken by the user.

Call	Reason	Recourse*
No Call – NO GRID	Reader unable to image Test Substrate	Ensure Test Substrate is seated properly in the Substrate Holder. Repeat image analysis by selecting 'Menu' and 'Enter Barcode' and then scanning the Substrate barcode. If the No-Call persists, repeat BC-GN from original blood culture specimen
No Call – INT CTL 1	INT CTL 1 Not Detected. Probable failure during the target hybridization part of the procedure only. This control does not require extraction to work properly.	
No Call – INT CTL 2	INT CTL 2 Not Detected. Probable failure during extraction part of the procedure. This control requires extraction and hybridization to work properly.	Repeat BC-GN
No Call – INT CTL	INT CTL 1 and INT CTL 2 Not Detected. Probable failure during the target hybridization and/or extraction portions of the procedure.	
No Call – VARIATION	Reader unable to obtain test result	
No Call – BKGD No Call – NEG CTL	because of high variability in the target- specific signals.	
Processing Error	Pre-analytical errorInternal checks within the Processor <i>SP</i> detected an unexpected event.	Power cycle Processor <i>SP</i> , repeat BC-GN from original specimen.

 Table 2:
 Invalid Calls and Recourse

QUALITY CONTROL

Quality control, as a component of an overall quality assurance program, consists of tests and procedures for monitoring and evaluating the analytical performance of a measurement system to ensure the reliability of test results.

A. Verigene System

The Verigene System uses a series of automated on-line quality measurements to monitor instrument functionality, software performance, fluidics, test conditions, reagent integrity, and procedural steps each time a test is performed. A series of automated on-line procedural checks guide the user through the testing process each time a test is performed. The **BC-GN** test barcode and sample information are linked upon entry into the Verigene Reader to help prevent misreporting of results.

B. Assay Controls

BC-GN is performed using single-use disposable reagent trays and cartridges, in which all reagents are prepackaged to prevent reagent dispensing errors. Several levels of controls are built into **BC-GN** to ensure that failures at any procedural step of **BC-GN** are identified during the procedure.

Internal Controls

BC-GN contains two sets of internal controls to ensure proper fluid control, hybridization, and signal detection. The first, referred to as INT CTL 1, is an internal processing control which detects the presence (hybridization and signal enhancement) of an artificial DNA oligonucleotide construct and mediator oligonucleotide contained within the sample buffer on the Extraction Tray. The second, referred to as INT CTL 2, verifies the presence of DNA from S*hewanella oneidensis*, which is in the **BC-GN** utility tray and added to the sample prior to the nucleic acid extraction step.

When detecting a negative sample, both the internal processing controls INT CTL 1 and INT CTL 2 must be present for a valid "Not Detected" call for all targets to be reported. If INT CTL 1 or INT CTL 2 is not detected, a "No Call – INT CTL 1" or a "No Call – INT CTL 2" result, respectively, is generated. If both INT CTL 1 and INT CTL 2 are not detected, a "NO CALL – INT CTL" result is generated. These internal controls are not utilized for the detection of positive samples.

External Controls

It is highly recommended that known blood culture specimens positive for each of the **BC-GN** panel organisms be tested routinely as defined by the user's laboratory's standard operating procedures on a rotating basis using 3-4 smaller groups of organisms, and/or under the following circumstances:

- Instrument installation, test validation, and when troubleshooting is necessary
- During performance verification for receipt of a new set/lot of consumables;
- When the integrity of consumables or the device is in question.

Frozen aliquots of blood cultures containing these organisms may be used for this purpose. When preparing QC material from a positive blood culture bottle, sterilize the bottle top by wiping with an alcohol wipe, invert the bottle \geq 4 times to homogenize the specimen, draw fluid by using a 10 mL syringe (equipped preferably with a 16 gauge needle), and transfer to a secondary vessel. Vortex secondary vessel to homogenize specimen, dispense 1 mL aliquots into cryovials and store the aliquots at \leq -70 °C.

Regardless of the choice of quality control materials, all external quality control requirements and testing should be performed in conformance with local, state, and federal regulations or accreditation organizations as applicable and should follow the user's laboratory standard quality control procedures.

TROUBLESHOOTING

Refer to the Troubleshooting section of the Verigene System User's Manual.

LIMITATIONS

- A trained health care professional should interpret assay results together with the patient's medical history, clinical signs and symptoms, and the results of other diagnostic tests.
- In mixed cultures containing gram-negative bacteria and other organisms, BC-GN may not identify all the detectable organisms in the specimen.
- In rare instances for specimens with organisms carrying a resistance marker, **BC-GN** may not yield a positive result for the resistance marker when the organism(s) is detected.
- Isolation on solid media is needed for AST, to differentiate mixed growth with other organisms and to identify positive blood cultures yielding an all targets "Not Detected" result.
- The clinical study included evaluation of BACTEC[™] Plus Aerobic/F and Standard Aerobic, BacT/ALERT[®] FA FAN[®] Aerobic, and VersaTREK[®] REDOX 1 and REDOX 1 EZ Draw[®] Aerobic bottles only. All other bottle types were evaluated analytically in the Universal Blood Culture Bottle Validation study (see Performance Characteristics section H).
- The detection of bacterial nucleic acid is dependent on proper specimen collection, handling, transport, storage, and preparation, including extraction. Failure to observe proper procedures in any of these steps could lead to incorrect results. False negative results may occur from improper specimen collection, handling or storage, technical error, sample mix-up, target concentration below the analytical sensitivity of the test, or below the concentration at bottle positivity, which might be caused by the growth of other organism(s).
- There is a risk of false negative or false positive results due to sequence variants in the bacterial targets of the assay.
- Detection of CTX-M, KPC, NDM, VIM, IMP, and/or OXA gene(s) in a specimen does not confirm that the resistant marker is associated with the organism(s) detected. Sub-culturing and subsequent testing of the isolated organism is necessary to definitively link antimicrobial resistance with a specific organism.
- Pediatric patient specimens were not differentiated from adult patient specimens in the clinical study; therefore, the performance characteristics of the assay with specimens obtained from pediatric patients have not been determined.
- Based on sequence homology analysis and analytical testing, a low likelihood of cross-reactivity exists between
 BC-GN probes which detect Klebsiella oxytoca and the nucleic acid sequence for Klebsiella pneumoniae.
 Therefore, on rare occasions, both a "K. oxytoca Detected" result and a "K. pneumoniae Detected" result may be obtained when Klebsiella pneumoniae is present in the specimen.
- In silico sequence analysis indicated sequence homology mismatches of *C. amalonaticus* that may yield false negative results, as demonstrated during **BC-GN** analytical testing, which resulted in detection of "Citrobacter" a total of 16 out of 18 tests (88.9%) for these organisms.
- BC-GN will not distinguish Escherichia coli from Shigella spp. including S. dysenteriae, S. flexneri, S. boydii, and S. sonnei.
- Buttiauxella gaviniae and Enteric group 137 (ATCC BAA-69) cross-react with **BC-GN** Citrobacter spp. probes, which will cause a false positive "Citrobacter Detected" result.
- *Escherichia albertii* strains cross-react with **BC-GN** E. coli probes, which will cause a false positive "E. coli Detected" result.
- *Kluyvera ascorbata, Raoultella ornithinolytica, Raoultella planticola,* and *Cedecea davisae* cross-react with **BC-GN** *Klebsiella oxytoca* probes, which will cause a false positive "K. oxytoca Detected" result.
- Leminorella grimontii, Enterococcus raffinosus and Candida parapsilosis cross-react with **BC-GN** CTX-M probes, which will cause a false positive "CTX-M Detected" result.
- **BC-GN** can only detect OXA types belonging to groups 23, 40, 48 and 58. OXA types from other groups cannot be detected by **BC-GN**. **BC-GN** will not detect OXA 51.
- Cultures containing mixed gram-positive and gram-negative organisms have not been evaluated with BC-GN.
- A combination of *in silico* analysis and wet testing was performed to demonstrate the ability of **BC-GN** to detect resistance marker genes coincident with the detection of a panel organism. However, wet testing was not performed on all bacterial species that are known to carry each resistance gene.

- Wet testing was not performed for all known resistance marker types and/or subtypes. Refer to Table 19 for a listing of types that were evaluated by wet testing and/or by *in silico* analysis. Other types not listed in Table 19 and/or in this limitations section have not been tested, therefore the ability of BC-GN to detect these types is unknown.
- **BC-GN** does not detect Acinetobacter tartarogenes, Enterobacter gergoviae, Enterobacter kobei, and Enterobacter pyrinus.
- False negative results for OXA may occur in certain *Acinetobacter radioresistens* strains that result as "Acinetobacter Detected" with **BC-GN**.
- Detection of IMP types 1, 4, 7, 8, 13, 15, 16, 18, 26, and 27 was demonstrated in the inclusivity study and/or clinical study. IMP types 2, 5, 6, 10, 11, 19, 20, 21, 24, 25, 28, 29, 30, 33, 37, 38, 40, 41 and 42 were not tested but *in silico* data shows that each has identical probe binding sites to types that have been tested, therefore, these types should be detected with a high degree of confidence. IMP types 3, 9, 12, 22, 32, 34, and 35 were not tested but are expected to be detected based on *in silico* data alone. IMP types 17, 23, 31, 36, and 39 neither were tested nor was there sequence information available to perform *in silico* analysis, therefore the ability of **BC-GN** to detect these types is unknown.
- Rare strains of *K. pneumoniae, Klebsiella variicola* and *Leclercia adecarboxylata* may cross-react with **BC-GN** *Enterobacter* spp. probes, which will cause a false positive "Enterobacter Detected" result.
- The performance of **BC-GN** for the detection of *A. baumannii* in the VersaTREK REDOX 1 EZ Draw /Aerobic bottle is unknown.
- Carbapenem resistance in the organisms detected by BC-GN can be due to mechanisms other than acquisition of the KPC (bla_{KPC}), OXA (bla_{OXA}), NDM (bla_{NDM}), VIM (bla_{VIM}), or IMP (bla_{IMP}) gene(s). Cephalosporin resistance in the organisms detected by BC-GN can be due to mechanisms other than acquisition of the CTX-M (bla_{CTX-M}) gene.
- Detection of a resistance marker does not always infer resistance.

WARNINGS AND PRECAUTIONS – GENERAL

- **BC-GN** is for *in vitro* diagnostic use.
- Caution: Federal law restricts this device to sale by or on the order of a physician or to a clinical laboratory.
- Never use any tips, trays, tubes, or Test Cartridges which have been broken, cracked, punctured, previously used or anyway visibly damaged; using damaged material may lead to No Call or false results.
- Handle supplies, reagents, and kits with powder-free gloves at all times to avoid contamination and change gloves between removal of used disposables and loading of new disposables.
- Handle specimens carefully. Open one tube or specimen at a time to prevent specimen contamination.
- Biological specimens such as stool, tissues, body fluids, and blood of humans are potentially infectious. When handling and/or transporting human specimens, follow all applicable regulations mandated by local, state/provincial, and federal agencies for the handling/transport of etiologic agents.

WARNINGS AND PRECAUTIONS - INSTRUMENTS

A. General Instrument Safety

WARNING: Use this product only as specified in this document. Using this instrument in a manner not specified by Nanosphere may result in personal injury or damage to the instrument. Anyone who operates the instrument must have:

- Received instructions in both general safety practices for laboratories and specific safety practices for the instrument.
- Read and understood all applicable Material Safety Data Sheets (MSDS).
- B. Electrical Shock Hazard

WARNING: Severe electrical shock can result from operating the instrument without its instrument covers or back panels in place. Do not remove instrument covers or panels. High-voltage contacts are exposed when instrument covers or panels are removed from the instrument. If service is required, outside the U.S. contact your local Nanosphere distributor.

WARNINGS AND PRECAUTIONS - REAGENTS AND TEST CARTRIDGES

- A. Toxicity of Reagents
 - Exposure to chemicals sealed inside the Test Cartridge is hazardous in case of skin contact, respiratory inhalation or ingestion. Protective disposable gloves, laboratory coats, and eye protection should be worn when handling specimens, Extraction Trays, Utility Trays, and Test Cartridges.
 - See Material Safety Data Sheets (MSDS) for toxicity information. MSDS are available upon request from Nanosphere, Inc.
- B. Waste Disposal
 - The Utility Tray contains a microorganism not known to cause disease in healthy humans (*Shewanella oneidensis*). Dispose of the Utility Tray in accordance with national, state, and local regulations.
 - The Extraction Tray contains residual nucleic acids, extraction reagents, and residual sample. It also contains a residual volume of the sample buffer that contains formamide, a teratogen. Dispose the Extraction Tray in accordance with national, state, and local regulations.
 - All of the Test Cartridge waste reagents, including the purified DNA, are contained within the Test Cartridge. There is a very small amount of residual formamide (≤1% v/v). Dispose the Test Cartridge in accordance with national, state, and local regulations.
 - Individual MSDSs are available for the Test Cartridge, Utility Tray and Extraction Tray at <u>www.e-labeling.eu</u> and at <u>www.nanosphere.us</u>.

EXPECTED VALUES

Prevalence

876 prospectively collected fresh and frozen blood culture specimens were obtained from twelve mediumto large-sized healthcare institutions geographically distributed across the United States. The number and percentage of positive cases (positivity rate) determined by the **BC-GN** test stratified by geographic region for each of the organisms and antimicrobial resistance markers detected by the **BC-GN** test are presented in **Table 3**. Overall, the **BC-GN** test detected at least one organism in 90.4% (792/876) and one resistance marker in 6.7% (59/876) of prospectively-collected specimens. In routine practice, prevalence rates may vary depending on the institution, geographical location, and patient population.

						US	S Geogra		on/Division					
	Region			Mid	west			So	outh	Northeast		West		
	Division	West	North		East Nor	th Centra	1	South	W. South	Middle	Pac	vific	Mountain	Total
Organism	DIVISION	Cer	ntral				u	Atlantic	Central	Atlantic	Fau		Wountain	
	State	NE	MN	МІ	WI	IL	ОН	MD	ΤX	NY	CA	WA	UT	
	Total n	23	36	108	74	64	67	90	145	88	26	67	88	876
Acinetobacter	POS n	1	0	1	0	2	2	3	2	1	0	1	0	13
Acimelobaciei	% Prev.	4.3	-	0.9	-	3.1	3.0	3.3	1.4	1.1	-	1.5	-	1.5
Citrobacter	POS n	0	0	1	1	1	1	0	1	0	0	1	1	7
Cillobacter	% Prev.	-	-	0.9	1.4	1.6	1.5	-	0.7	-	-	1.5	1.1	0.8
Enterobacter	POS n	2	2	5	7	2	6	11	11	4	1	5	11	67
Linterobacter	% Prev.	8.7	5.6	4.6	9.5	3.1	9.0	12.2	7.6	4.6	3.8	7.5	12.5	7.6
Proteus	POS n	2	1	6	3	5	0	1	8	3	0	1	2	32
FIOLEUS	% Prev.	8.7	2.8	5.6	4.1	7.8	-	1.1	5.5	3.4	-	1.5	2.3	3.7
E. coli	POS n	11	23	60	28	36	23	23	85	52	13	28	47	429
E. COII	% Prev.	47.8	63.9	55.6	37.8	56.3	34.3	25.6	58.6	59.1	50.0	41.8	53.4	49.0
Klebsiella	POS n	6	0	18	16	8	13	21	20	8	3	4	11	128
pneumoniae	% Prev.	26.1	-	16.7	21.6	12.5	19.4	23.3	13.8	9.1	11.5	6.0	12.5	14.6
Klebsiella	POS n	0	3	3	4	2	2	7	2	3	0	5	6	37
oxytoca	% Prev.	-	8.3	2.8	5.4	3.1	3.0	7.8	1.4	3.4	-	7.5	6.8	4.2
Pseudomonas	POS n	0	7	6	10	3	6	9	9	9	5	11	3	78
aeruginosa	% Prev.	-	19.4	5.6	13.5	4.7	9.0	10.0	6.2	10.2	19.2	16.4	3.4	8.9
Resistance														
Marker	Total n	21	35	98	67	56	52	73	136	78	22	55	80	773
(linked)														
NDM	POS n	0	0	0	1	0	0	0	0	0	0	0	0	1
	% Prev.	-	-	-	1.5	-	-	-	-	-	-	-	-	0.1
KPC	POS n	0	0	0	0	1	1	1	0	0	0	0	0	3
NIC	% Prev.	-	-	-	0	1.8	1.9	1.4	-	-	-	-	-	0.4
CTX-M	POS n	0	3	7	4	5	1	8	9	0	3	4	6	50
	% Prev.	-	8.6	7.1	6.0	8.9	1.9	11.0	6.6	-	13.6	7.3	7.5	6.5
VIM	POS n	0	0	0	0	0	0	0	0	0	0	0	0	0
V IIVI	% Prev.	-	-	-	-	-	-	-	-	-	-	-	-	•
IMP	POS n	0	0	0	0	0	0	0	0	0	0	0	0	0
	% Prev.	-	-	-	-	-	-	-	-	-	-	-	-	-
OXA	POS n	0	0	0	0	1	1	2	0	1	0	0	0	5
UNA	% Prev.	-	-	-	-	1.8	1.9	2.7	-	1.3	-	-	-	0.6

Tahlo 3.	Prevalence of Organisms Detected by BC-GN – Clinical Study Observations
	$\mathbf{D} = \mathbf{D} = $

(1) Geographic Areas Reference Manual (US Census Bureau). Chapter 6 https://www.census.gov/geo/reference/pdfs/GARM/Ch6GARM.pdf.Webpage last revised: 3/4/2013

PERFORMANCE CHARACTERISTICS

The results of the analytical and clinical studies conducted to establish the performance characteristics of **BC-GN** are provided below.

A. Clinical Performance

A method comparison study was conducted at multiple external clinical study sites to evaluate the performance of **BC-GN** by comparing **BC-GN** bacterial test results to reference culture, followed by bacterial biochemical identification, and for bacterial resistance markers, PCR amplification followed by confirmatory bi-directional sequencing. Subjects included individuals whose routine care called for blood culture testing and whose blood culture specimens were positive for microbial growth and identified by Gram stain as gram-negative.

There were 1434 evaluable specimens enrolled in the clinical trial; 62 specimens had an initial **BC-GN** "No Call" rate of 4.3% (62/1434 specimens) and 11 specimens had an initial Pre-Analytical Error (Pre-AE) rate of 0.8% (11/1434 tests run) for a total initial valid test rate of 94.9%. Of the 62 initial No Calls, 41 yielded a valid test result upon retesting and of the 11 initial Pre-AEs, 10 yielded a valid test result upon repeat and one (1) was classified as a final Pre-AE. The final "No Call" rate was 1.5% (21/1434 specimens) and the final Pre-Analysis Error rate was 0.8% (12/1507 tests run) for a total final valid test rate of 97.7%. The twenty-one (21) specimens which yielded a final "No Call" result and the one (1) specimen which yielded a final "No Call" result and the one (1) specimen which yielded a final Pre-AE (22 specimens in total), were not included in the valid dataset utilized in the comparative test result data analysis. Therefore, 98.5% (1412/1434) of the valid specimens were analyzed in this clinical evaluation to establish clinical performance of the test; 604 of which were prospectively-collected fresh specimens, 272 of which were prospectively-collected frozen specimens, 239 of which were selected frozen specimens, and 297 of which were simulated frozen specimens.

The clinical performance of **BC-GN** is summarized below in **Table 4** for the four genus level bacterial targets (n=1412) and in **Table 5** for the four species-level bacterial targets (n=1412). Bacterial **BC-GN** test results obtained during the study were compared with reference results obtained from culture/conventional and automated phenotypic biochemical identification techniques.

Of the 1412 specimens analyzed, 146 specimens contained organisms not detected by **BC-GN** is summarized below in **Table 6**. Because the **BC-GN** reporting algorithm links the reporting of any resistance marker with the detection of one or more bacterial targets, the clinical performance of **BC-GN** for the 6 resistance markers was determined with the 1266 specimen dataset and summarized in **Table 7**. Resistance marker **BC-GN** test results obtained during the study were compared with reference results obtained from resistance marker-specific PCR amplification and confirmatory bi-directional sequencing.

In total, there were 22 mixed specimens that were detected by **BC-GN**, and 35 mixed specimens detected by the reference culture methods. **Table 8** lists the distinct mixed specimen combinations detected by **BC-GN** in the clinical study and **Table 9** lists the additional distinct mixed specimen combinations detected by the reference/comparator methods, but not detected by **BC-GN**.

Table 10 contains additional genus/group-level specific **BC-GN** performance data stratified by individual species within each genus; i.e.; *Acinetobacter* spp., *Citrobacter* spp., *Enterobacter* spp., and *Proteus* spp.

The performance of **BC-GN** for the detection of resistance markers, as described in **Table 7**, is further detailed by organism (as detected by the reference method) in **Table 11** and **Table 12**, for "CTX-M, OXA, KPC" and "IMP, VIM, NDM", respectively. **Table 13** provides a summary of the organisms in the clinical study that were found to contain single and dual resistance markers.

 Table 4:
 Summary of Clinical Test Performance (n=1412) - Compared to Reference Methods (Culture and Conventional Biochemical and Automated Phenotypic Identification)

	Sma			% Agreem	ent (95% CI)		Specimen Type			% Agreem	ent (95% Cl)
	Spe	cimen Type	n	Positive	Negative		Spe	ecimen Type	n	Positive	Negative
	Prospective	Fresh	604	100% 12/12 (73.5-100)	100% 592/592 (99.4-100)		Prospective	Fresh	604	100% 5/5 (47.8-100)	99.8% 598/599 (99.1-100)
ġ	Prosp	Frozen	272	50% 1/2 (1.3-98.7)	100% 270/270 (98.6-100)	ġ	Prosp	Frozen	272	100% 1/1 (2.5-100)	100% 271/271 (98.7-100)
Acinetobacter spp.	Selected	Frozen	239	100% 15/15 (78.2-100)	99.6% 223/224 (97.6-100)	Citrobacter spp.	Selected	Frozen	239	100% 13/13 (75.3-100)	100% 226//226 (98.4-100)
Acinet	Simulated	Frozen	297	100% 27/27 (87.2-100)	100% 270/270 (98.6-100)	Citro	Simulated	Frozen	297	100% 30/30 (88.4-100)	100% 267/267 (98.6-100)
		All	1412	98.2% 55/56ª (90.5-100)	99.9% 1355/1356 ^b (99.6-100)		All		1412	100% 49/49 (92.8-100)	99.9% 1362/1363 <i>°</i> (99.6-100)
	Prospective	Fresh	604	95.6% 43/45 (84.9-99.5)	100% 559/559 (99.3-100)		Prospective	Fresh	604	100% 20/20 (83.2-100)	100% 584/584 (99.4-100)
ъ.		Frozen	272	95.2% 20/21 (76.2-99.9)	98.4% 247/251 (96.0-99.6)		Prosp	Frozen	272	100% 12/12 (73.5-100)	100% 260/260 (98.6-100)
Enterobacter spp.	Selected	Frozen	239	100% 29/29 (88.1-100)	98.1% 206/210 (95.2-99.5)	Proteus spp.	Selected	Frozen	239	100% 24/24 (85.8-100)	99.5% 214/215 (97.4-100)
Enter	Simulated	Frozen	297	100% 28/28 (87.7-100)	100% 269/269 (98.6-100)	Pro	Simulated	Frozen	297	100% 2/2 (15.8-100)	100% 295/295 (98.8-100)
		All	1412	97.6% 120/123 ^d (93.0-99.5)	99.4% 1281/1289⁰ (98.8-99.7)	All		1412	100% 58/58 (93.8-100)	99.9% 1353/1354† (99.6-100)	

	No.	Identified by BC-GN test as:	Identified by Reference Method(s) as:	PCR Amp/BD Sequencing Results (if applicable)				
a.	1	"Not Detected"	A. baumannii	Negative for Acinetobacter spp.				
b.	1	"Acinetobacter"	Enterococcus spp.	Negative for Acinetobacter spp.				
C.	1	"Citrobacter"	S. marcescens	C. freundii (Low quality score ID) and S. marcescens				
	1	"K. oxytoca"	E. cloacae complex and K. oxytoca	E. cloacae/E. aerogenes				
d.	1	"K. oxytoca" "K. pneumoniae"	K. oxytoca, K. pneumoniae and E. cloacae complex	E. cloacae/E. aerogenes and K. oxytoca				
	1	"E. coli"	E. cloacae	E. coli				
		"K. pneumoniae" "Enterobacter"	K. pneumoniae	Unable to differentiate: Similar match to both <i>K. variicola</i> and <i>K. pneumoniae</i>				
•	3	"K. pneumoniae" "Enterobacter"	K. pneumoniae	Unable to differentiate: Similar match to both K. variicola and K. pneumoniae				
e.		"K. pneumoniae" "Enterobacter"	K. pneumoniae	Unable to differentiate: Similar match to both K. variicola and K. pneumoniae				
	1	"Enterobacter"	E. coli	E. cloacae				
	1	"Enterobacter"	K. pneumoniae	K. variicola				
f.	1	"Proteus"	No growth by culture	N/A				

 Table 5:
 Summary of Clinical Test Performance (n=1412) - Compared to Reference Methods (Culture and Conventional Biochemical and Automated Phenotypic Identification)

	0			% Agreeme	ent (95% CI)		0			% Agreeme	ent (95% CI)
	Spe	cimen Type	n	Positive	Negative		Specimen Type		n	Positive	Negative
	Prospective	Fresh	604	100% 283/283 (98.7-100)	99.1% 318/321 (97.3-99.8)		Prospective	Fresh	604	97.1% 67/69 (89.9-99.7)	100% 535/535 (99.3-100)
	Prosp	Frozen	272	99.3% 142/143 (96.2-100)	99.2% 128/129 (95.8-100)	inosa	Prosp	Frozen	272	91.7% 11/12 (61.5-99.8)	100% 260/260 (98.6-100)
Escherichia coli	Selected	Frozen	239	100% 42/42 (91.6-100)	99.5% 196/197 (97.2-100)	Pseudomonas aeruginosa	Selected	Frozen	239	100% 19/19 (82.4-100)	100% 220/220 (98.3-100)
Esc	Simulated	Frozen	297	100% 50/50 (92.9-100)	100% 247/247 (98.5-100)	Pseudom	Simulated	Frozen	297	100% 27/27 (87.2-100)	100% 270/270 (98.6-100)
		All	1412	99.8% 517/518 ^g (98.9-100)	99.4% 889/894 ^h (98.7-99.8)		All		1412	97.6% 124/127† (93.3-99.5)	100% 1285/1285 (99.7-100)
	Prospective	Fresh	604	95.7% 22/23 (78.1-99.9)	98.2% 576/581 (95.9-99.4)		Prospective	Fresh	604	88.0% 88/100 (80.0-93.6)	100% 504/504 (99.3-100)
Ca.	Prosp	Frozen	272	100% 9/9 (66.4-100)	99.6% 262/263 (97.9-100)	niae	Prosp	Frozen	272	87.0% 40/46 (73.7-95.1)	100% 226/226 (98.4-100)
Klebsiella oxytoca	Selected	Frozen	239	92.6% 25/27 (75.7-99.1)	100% 212/212 (98.3-100)	Klebsiella pneumoniae	Selected	Frozen	239	94.7% 36/38 (82.3-99.4)	100% 201/201 (98.2-100)
Kleb	Simulated	Frozen	297	60.0% 3/5 (14.7-94.7)	100% 292/292 (98.7-100)	Klebsie	Simulated		297	99.2% 121/122 (95.5-100)	100% 175/175 (97.9-100)
		All	1412	92.2% 59/64 (82.7-97.4)	99.6% 1342/1348 ^k (99.0-99.8)	All		1412	93.1% 285/306† (89.7-95.7)	100% 1106/1106 (99.7-100)	

Species-Level Targets E. coli, K. pneumonia, K. oxytoca, and P. aeruginosa

	No.	Identified by BC-GN test as:	Identified by Reference Method(s) as:	PCR Amp/BD Sequencing Results (if applicable)			
g.	1	"Enterobacter"	E. coli	E. cloacae			
	1	"E. coli"	E. cloacae	E. coli			
h	1	"K. pneumoniae" "E. coli"	K. pneumoniae	Shigella spp.			
	1	"E. coli"	K. oxytoca	E. coli			
		"K. oxytoca"					
	1	"E. coli"	K. oxytoca	K. oxytoca and E. coli			
	1	"Enterobacter" "E. coli"	E. cloacae complex	Shigella spp.			
		"Not Detected"	K. pneumoniae	Unable to differentiate: Similar match to both K. variicola and K. pneumoniae			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	Klebsiella spp.			
		"Not Detected"	K. pneumoniae	Unable to differentiate: Similar match to both K. variicola and K. pneumoniae			
		"Not Detected"	K. pneumoniae	K. variicola			
	17	"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
i.		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	Unable to differentiate: Similar match to both K. variicola and K. pneumoniae			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
		"Not Detected"	K. pneumoniae	K. variicola			
	1	"E. coli"	E. coli, K. pneumoniae and S. dysgalactiae	K. pneumoniae (E. coli not tested)			
	1	"KPC"	K. pneumoniae and KPC	K. pneumoniae			
	1	"Enterobacter"	K. pneumoniae	K. variicola			
	1	"E. coli"	K. oxytoca	Klebsiella spp.			
	1	"Not Detected"	K. oxytoca				
	1	"Not Detected"	K. oxytoca	K. variicola			
	1	"E. coli" "CTX-M"	K. oxytoca, E. coli, CTX-M Gp. 1	K. oxytoca and E. coli			
	1	"E. coli"	K. oxytoca and E. coli	K. oxytoca and E. coli			
	1	"KPC"	K. oxytoca and KPC	K. oxytoca			
		"K. oxvtoca"	R planticola	R. planticola			
		"K. oxytoca"	R. planticola	R. planticola			
	5	"K. oxytoca" "K. oxytoca"	R. planticola	R. planticola			
	-	"K. oxytoca"	R. planticola	R. planticola			
		"K. oxytoca"	R. planticola	R. planticola			
	1	"K. pneumoniae" "K. oxytoca"	K. pneumoniae	K. pneumoniae			
	1	"K. pneumoniae" "CTX-M"	P. aeruginosa, K. pneumoniae and CTX-M	P. aeruginosa (K. pneumoniae not tested)			
	1	"K. pneumoniae"	P. aeruginosa and K. pneumoniae	P. aeruginosa			
	1	"E. coli"	P. aeruginosa and E. coli	P. aeruginosa			

Table 6: Summary of BC-GN "Not Detected" Organisms (n=146) – Identification by Reference Method

Specime	en Type	n=146	Organism Detected by Reference Method					
ospective	Fresh 67 Frozen 36		C.gleum (1); Corynebacterium spp.& S. paucimobilis (1); D. acidovorans & S. maltophilia (1); E. faecium & S. maltophilia (1); K. pneumoniae (10); Moraxella group (2); M. morganii (2); Pandoraea spp. (1); P. agglomerans (1); P. canis (2); P. shigelloides (1); P. stuartii (1) P. citronellolis (1); P. fluorescens (1); P. fluorescens/putida (1); P. mendocina (1); P. monteilii (1); P. putida (2); S. putida & S. hominis (1); P. stutzeri (2); R. aquatilis (1); R. pickettii (1); Salmonella group (2); S. liquefaciens group (5); S. marcescens (10); S. marcescens & A. xylosoxidans (1); S. marcescens & S. hominis (1); S. paucimobilis (3); S. maltophilia (6); Streptococcus spp. (1); No growth (2)					
Ē			 A. baumannii complex (1); B. vesicularis (1); B. cepacia (1); B. gladioli (1); C. pauculus & S. maltophilia (1); E. meningoseptica (1); H. influenzeae (1); K. pneumoniae (6); Moraxella group (1); M. nonliquefaciens (1); M. morganii (2); P. canis (2); P. putida (1); S. enterica (1); Salmonella group (2); S. marcescens (6); S. odorifera & Pantoea spp. (1); S. paucimobilis (2); S. maltophilia (4) 					
Selected	Frozen 33		E.faecium (1); E. faecalis (1); K. oxytoca (1); K. pneumoniae (1); S. marcescens (26); S. maltophilia (1); S. aureus (1); No growth (1)					
Simulated	Frozen 10		K. oxytoca (1); K. pneumoniae (1); M. morganii (4); P. putida (1); S. marcescens (2); S putrefaciens (1)					

 Table 7:
 Summary of Clinical Test Performance (n=1266) - Compared to Reference Methods (PCR Amplification/Bi-Directional Sequencing)

	•	-		% Agreeme	ent (95% CI)		•	-		% Agreeme	ent (95% CI)
	Specin	nen Type	n	Positive	Negative		Speci	men Type	n	Positive	Negative
	ective	Fresh	537	100 % 5/5 (47.8-100)	100% 532/532 (99.3-100)		ective	Fresh	537	97.5% 39/40 (86.8-99.9)	100% 497/497 (99.3-100)
	Prospective	Frozen	236	-	100% 236/236 (98.5-100)		Prospective	Frozen	236	91.2% 11/12 (61.5-99.8)	100% 224/224 (98.4-100)
OXA	Selected	Frozen	206	50.0% 2/4 (6.8-93.2)	100% 202/202 (98.2-100)	CTX-M	Selected	Frozen	206	100% 3/3 (29.2-100)	100% 203/203 (98.2-100)
	Simulated	Frozen	287	98.3% 54/55 (90.8-100)	99.6% 231/232 (97.6-100)		Simulated Selected	Frozen	287	100% 98/98 (96.3-100)	99.5% 188/189 (97.1-100)
		All	1266	95.3% 61/64 ^m (86.9-99.0)	99.9% 1201/1202 " (99.5-100)			All	1266	98.7% 151/153 ^k (95.4-99.8)	99.9% 1112/1113 (99.5-100)
	Prospective	Fresh	537	100% 2/2 (15.8-100)	100% 535/535 (99.3-100)		Prospective	Fresh	537	100% 1/1 (2.5-100)	100% 536/536 (99.3-100)
		Frozen	236	100% 1/1 (2.5-100)	100% 235/235 (98.5-100)	MDM		Frozen	236	-	100% 236/236 (98.5-100)
KPC	Simulated Selected	Frozen	206	-	100% 206/206 (98.2-100)		Simulated Selected	Frozen	206	-	100% 206/206 (98.2-100)
	Simulated	Frozen	287	100% 48/48 (92.6-100)	100% 239/239 (98.5-100)		Simulated	Frozen	287	100% 40/40 (91.2-100)	100% 247/247 (98.5-100)
		All	1266	100% 51/51 (93.1-100)	100% 1215/1215 (99.7-100)			All	1266	100% 41/41 (91.4-100)	100% 1225/1225 (99.7-100)
	Prospective	Fresh	537	-	100% 537/537 (99.3-100)		Prospective	Fresh	537	-	100% 537/537 (99.3-100)
		Frozen	236	-	100% 236/236 (98.5-100)			Frozen	236	-	100% 236/236 (98.5-100)
IMP	Selected	Frozen	206	-	100% 206/206 (98. 2-100)	VIM	Selected	Frozen	206	-	100% 206/206 (98.2-100)
	Simulated	Frozen	287	100% 48/48 (92.6-100)	100% 239/239 (98.5-100)		Simulated	Frozen	287	100% 41/41 (91.4-100)	100% 246/246 (98.5-100)
			1266	100% 48/48 (92.6-100)	100% 1218/1218 (99.7-100)			All		100% 41/41 (91.4-100)	100% 1225/1225 (99.7-100)
		No.	"E. col		BC-GN test as:		Fach	Identifie erichia coli and		ence Method(s) as:	
	k.	1	"E. col	i" and "Enterobacter			Esche	erichia coli and	CTX-M Gp1		
I. 1 "Citrobacter", "CTX-M" and "OXA" C. braakii and OXA Gp48 2 "Acinetobacter" Acinetobacter baumannii and OXA G							A Cn23				
=	m	<u> </u>		tobacter"				tobacter bauma tobacter radiore			
Ī				tobacter" and "OXA				tobacter bauma			

Resistance Marker Targets CTX-M, OXA, KPC, VIM, NDM, and IMP

Mult	iple Organism Combination	s Detected by BC-GN ¹			Reference	e Test	0
Organism 1	Organism 2	Organism 3	Resistance Marker	Total Specimens	Discrepant Specimens	Discrepant Analyte(s) ¹	Sample ID(s)
Escherichia coli	Klebsiella pneumoniae	Acinetobacter spp.	NONE	1	0	-	07072
Acinetobacter spp.	Klebsiella pneumoniae		NONE	1	0	-	06097
Acinetobacter spp.	Escherichia coli		OXA	1	0	-	99038
Acinetobacter spp.	Enterobacter spp.		NONE	1	0	-	99227
Enterobacter spp.	Escherichia coli		NONE	2	2	Escherichia coli, CTX-M	15074 11065
Enterobacter spp.	Klebsiella pneumoniae		NONE	3	2	E. asburaie Enterobacter spp.	06062 12077 17081
Enterobacter spp.	Klebsiella pneumoniae		IMP/VIM	1	0	-	99472
Enterobacter spp.	Klebsiella oxytoca		NONE	1	0	-	09098
Enterobacter spp.	Klebsiella pneumoniae		NONE	1	1	Enterobacter spp.	14017
Escherichia coli	Proteus spp.		NONE	3	0	-	12041 13035 15071
Escherichia coli	Klebsiella oxytoca		NONE	2	1	Escherichia coli	99163 07034
Escherichia coli	Klebsiella pneumoniae		NONE	3	1	Escherichia coli	08098 10023 99243
Klebsiella oxytoca	Klebsiella pneumoniae		NONE	2	2	K. oxytoca, Enterobacter cloacae complex	08105 09011
	TOTAL			22	9		

Table 8: Clinical Mixed Specimen Combinations Detected by BC-GN

¹ Defined as an analyte that was detected by the **BC-GN** test, but not detected by the reference methods.

Table 9: Clinical Mixed Specimen Combinations Detected by Reference Methods

Multiple	Organism Combinations b	y Reference Test ¹			Sample		
Organism 1	Organism 2	Organism 3	Resistance Marker	Total Specimens	Discrepant Specimens	Discrepant Analyte(s) ¹	ID(s)
A. baumannii complex	Enterococcus spp	Escherichia coli	OXA	<u> </u>	0	-	99038
Enterobacter cloacae complex	Klebsiella oxytoca	Klebsiella pneumoniae	NONE	1	1	Enterobacter cloacae complex	09011
Escherichia coli	Klebsiella pneumoniae	Streptococcus dysgalactiae	NONE	1	1	Klebsiella pneumoniae	09050
Escherichia coli	Proteus mirabilis	Sphingomonas paucimobilis	NONE	1	0	-	13035
Klebsiella oxytoca	Pseudomonas stutzeri	Stenotrophomonas maltophilia	NONE	1	0	-	09078
Klebsiella oxytoca	Pseudomonas putida	Stenotrophomonas maltophilia	NONE	1	0	-	09079
A. baumannii complex	Staphylococcus aureus		OXA	1	0	-	09008
Acinetobacter baumannii	Stenotrophomonas maltophilia		NONE	1	0	-	99081
Aeromonas caviae	Escherichia coli		NONE	1	0	-	08017
Aeromonas hydrophila	Escherichia coli		NONE	1	0	-	08040
Corynebacterium spp.	Sphingomonas paucimobilis		N/A	1	0	-	09048
Cupriavidus pauculus	Stenotrophomonas maltophilia		N/A	1	0	-	06147
Delftia acidovorans	Stenotrophomonas maltophilia		N/A	1	0	-	09065
E. cloacae complex	Enterococcus faecium		NONE	1	0	-	13040
E. cloacae complex	Enterococcus spp.		NONE	1	0	-	99105
E. cloacae complex	Hafnia alvei		NONE	1	0	-	17082
E. cloacae complex	Klebsiella oxytoca		NONE	1	1	K. oxytoca	08066
E. cloacae complex	Morganella morganii		NONE	1	0	-	09063
E. cloacae complex	Pantoea spp.		NONE	1	0	-	11055
Enterobacter aerogenes	Escherichia coli		CTX-M	1	1	CTX-M	11065
Escherichia coli	Enterococcus faecalis		CTX-M	1	0	-	17010
Escherichia coli	Klebsiella pneumoniae		NONE	1	1	Klebsiella pneumoniae	16029
Escherichia coli	Klebsiella oxytoca		N/A	2	2	K. oxytoca (2)	99222 99303
Escherichia coli	Pseudomonas aeruginosa		NONE	1	1	Pseudomonas aeruginosa	07009
Escherichia coli	Enterococcus faecium		NONE	1	0	-	13028
Klebsiella pneumoniae	Pseudomonas aeruginosa		N/A	2	1	Pseudomonas aeruginosa	12045 09002
Klebsiella oxytoca	Serratia marcescens		NONE	1	0	-	12072
Pseudomonas putida	Staphylococcus hominis		N/A	1	0	-	09088
Pseudomonas	Sphingomonas		IMP	1	0		99586
aeruginosa	paucimobilis		IIVIP	1	0	-	99266
Serratia marcescens	Achromobacter xylosoxidans		N/A	1	0	-	09092
Serratia marcescens	Staphylococcus hominis		N/A	1	0	-	11027
Serratia odorifera	Pantoea spp.		N/A	1	0	-	12031
Stenotrophomonas maltophilia	Enterococcus faecium		N/A	1	0	-	11068
	TOTAL			35	9		

1 Defined as an analyte that was detected by the reference methods which should have been detected by **BC-GN** but was not.

Table 10: Summary of Genus/Group-level Test Performance versus Reference Method(s) - Stratified by Species

/	Acinetobacter G	ienus			Citrobacter G	Benus			Enterobacter Ge	nus	
	Clinical	Analytica	(2)		Clinical	Analytic	al (2)		Clinical	Analytica	1 (2)
Organism		greement % Cl)	No. of Strains ⁽³⁾	Organism		greement % Cl)	No. of Strains ⁽³⁾	Organism	% POS Ag (95%		No. of Strains ⁽³⁾
Combined Acinetobacter	98.2% 55/56 (90.5-100)	96.3% 104/108 (90.8-9.0)	36	Combined Citrobacter	100% 49/49 (92.8-100)	100% 123/123 (97.1-100)	41	Combined Enterobacter	97.5% 119/122 (93.0-99.5)	100% 87/87 (95.9-100)	29
Acinetobacter spp.	100% 1/1 (2.5-100)	NT ⁽¹⁾	-	amalonaticus	100% 3/3 (29.2-100)	100% 15/15 (78.2-100)	5	cloacae	96.3% 26/27 (81.0-99.9)	100% 24/24 (85.8-100)	6
baylyi	NT	100% 6/6 (54.1-100)	2	braakii*	100% 10/10 (69.2-100)	100% 3/3 (29.2-100)	1	<i>cloacae</i> complex	100% 74/76 (90.8-99.7)	NT	-
lwoffii	100% 5/5 (47.8-100)	100% 9/9 (66.4-100)	3	freundii	100% 22/22 (84.5-100)	100% 15/15 (78.2-100)	5	aerogenes	100% 15/15 (78.2-100)	100% 15/15 (78.2-100)	5
baumannii	100% 30/30 (88.4-100)	100% 24/24 (85.8-100)	6	koseri	100% 12/12 (73.5-100)	100% 15/15 (78.2-100)	5	asburaie	100% 4/4 (40.0-100)	100% 12/12 (73.5-100)	4
<i>baumannii</i> complex	93.3% 14/15 (68.1-99.8)	NT	-	youngae	2/2 100% (15.8-100)	100% 15/15 (78.2-100)	5	amnigenus	NT	100% 9/9 (66.4-100)	3
ursingii	100% 2/2 (15.8-100)	100% 3/3 (29.2-100)		farmeri	NT	100% 6/6 (54.1-100)	2	cancerogenus	NT	100% 15/15 (78.2-100)	5
bereziniae	NT	100% 3/3 (29.2-100)	1	gillenii	NT	100% 9/9 (66.4-100)	3	hormaechei	NT	100% 9/9 (66.4-100)	3
calcoaceticus	NT	100% 15/15 (78.2-100)	5	murliniae	NT	100% 9/9 (66.4-100)	3	ludwigii	NT	100% 3/3 (29.2-100)	1
guillouiae	NT	100% 3/3 (29.2-100)	1	rodentium	NT	100% 15/15 (78.2-100)	5	nimipressuralis oryzae	NT	100% 3/3 (29.2-100)	1
haemolyticus	NT	100% 15/15 (78.2-100)	5	sedlakii	NT	100% 9/9 (66.4-100)	3	Combined Proteus	Proteus Genu 100% 58/58 (93.8-100)	s 100% 48/48 (92.6-100)	16
johnsonii	NT	100% 9/9 (66.4-100)	3	werkmanii	NT	100% 9/9 (66.4-100)	3	mirabilis	100% 58/58 (93.8-100)	100% 15/15 (78.2-100)	5
junii	NT	100% 9/9 (66.4-100)	3					hauseri	NT	100% 6/6 (54.1-100)	2
schindleri	NT	100% 3/3 (29.2-100)	1					myxofaciens	NT	100% 3/3 (29.2-100)	1
radioresistens	100% 3/3 (29.2-100)	55.6% 5/9 (21.2-86.3)	3					penneri	NT	100% 6/6 (54.1-100)	2
								vulgaris	NT	100% 15/15 (78.2-100)	5

(1) "Not Tested"

⁽²⁾ Analytical Reactivity (Inclusivity) (Section D)

(3) Each strain was tested in triplicate

Table 11: Detection of CTX-M, OXA, and KPC Resistance Markers Linked with Organisms, as determined by reference method (n=1266)

	СТХ-М		0.	ХА	ĸ	PC		
	Percent	Agreement	Percent A	Agreement	Percent A	Percent Agreement		
Organism	Positive (95% Cl)	Negative (95% Cl)	Positive (95% CI)	Negative (95% Cl)	Positive (95% Cl)	Negative (95% Cl)		
Acinetobacter spp.		100% 52/52 (93.2-100)	85.0% 17/20 ^(c) (62.1-96.8)	96.9% 31/32 (83.8-99.9)		100% 52/52 (93.21-100)		
Citrobacter spp.		98.0% 49/50 (89.4-100)	100% 1/1 ^(d) (2.5-100)	100% 49/49 (92.8-100)	100% 1/1 ⁽⁹⁾ (2.5-100)	100% 49/49 (92.8-100)		
Enterobacter spp.	100% 9/9 ^(a) (66.4-100)	100% 111/111 (96.7-100)	100% 2/2 ^(e) (15.8-100)	100% 118/118 (96.9-100)	100% 1/1 ^(h) (2.5-100)	100% 119/119 (97.0-100)		
E. coli	98.8% 85/86 (93.7-100)	100% 424/424 (99.1-100)	100% 16/16 (79.4-100)	100% 494/494 (99.3-100)	100% 2/2 (15.8-100)	100% 508/508 (99.3-100)		
Proteus spp.		100% 56/56 (93.6-100)		100% 56/56 (93.6-100)		100% 56/56 (93.6-100)		
P. aeruginosa		100% 124/124 (97.1-100)		100% 124/124 (97.1-100)	100% 1/1 (2.5-100)	100% 123/123 (97.1-100)		
K. oxytoca	100% 1/1 (2.5-100)	100% 59/59 (93.9-100)	100% 2/2 (15.8-100)	100% 58/58 (93.8-100)	100% 1/1 (2.5-100)	100% 59/59 (93.9-100)		
K. pneumoniae	100% 56/56 (93.6-100)	100% 217/217 (98.3-100)	100% 22/22 (84.6-100)	100% 251/251 (98.5-100)	100% 45/45 (92.1-100)	100% 228/228 (98.4-100)		
Polymicrobial samples	0% 0/1 ^(b) (0-97.5)	100% 20/20 (83.2-100)	0% 1/1 ^(f) (2.5-100)	100% 20/20 (83.2-100)		100% 21/21 (83.9-100)		
TOTAL	98.7% 151/153 (95.4-99.8)	99.9% 1112/1113 (99.5-100)	95.3% 61/64 (86.9-99.0)	99.9% 1201/1202 (99.5-100)	100% 51/51 (93.1-100)	100% 1215/1215 (99.7-100)		

a. Eight (8) Enterobacter cloacae complex and one (1) Enterobacter cloacae

b. One (1) Escherichia coli and Enterobacter aerogenes

c. Eleven (11) Acinetobacter baumannii and six (6) Acinetobacter baumannii complex and three (3) Acinetobacter radioresistens

d. One (1) Citrobacter braakii

e. Two (2) Enterobacter cloacae

f. One (1) Escherichia coli and Acinetobacter baumannii complex and Enterococcus spp.

g. One (1) Citrobacter freundii

h. One (1) Enterobacter cloacae complex

Table 12: Detection of VIM, NDM, and KPC Resistance Markers Linked with Organisms, as determined by reference method (n=1266)

	VIM		N	DM	IMP		
	Percent /	Agreement	Percent A	greement	Percent Agreement		
Organism	Positive (95% CI)	Negative (95% CI)	Positive (95% CI)	Negative (95% CI)	Positive (95% CI)	Negative (95% CI)	
Acinetobacter spp.		100% 52/52 (93.2-100)	100% 1/1 ^(d) (2.5-100)	100% 51/51 (93.0-100)	100% 5/5 ^(g) (47.8-100)	100% 47/47 (92.5-100)	
Citrobacter spp.	100% 3/3 ^(a) (29.2-100)	100% 47/47 (92.5-100)	100% 2/2 ^(e) (15.8-100)	100% 48/48 (92.6-100)	100% 1/1 ^(h) (2.5-100)	100% 49/49 (92.8-100)	
Enterobacter spp.	100% 10/10 ^(b) (69.2-100)	100% 110/110 (96.7-100)	100% 6/6 ^(f) (54.7-100)	100% 114/114 (96.8100)	100% 6/6 ⁽ⁱ⁾ (54.1-100)	100% 114/114 (96.8-100)	
E. coli	100% 1/1 (2.5-100)	100% 509/509 (99.3-100)	100% 15/15 (78.2-100)	100% 495/495 (99.3-100)	100% 1/1 (2.5-100)	100% 509/509 (99.3-100)	
Proteus spp.	-	100% 56/56 (93.6-100)		100% 56/56 (93.6100)	100% 2/2 ^(ز) (15.8-100)	100% 54/54 (93.4-100)	
P. aeruginosa	100% 2/2 (15.8-100)	100% 122/122 (97.0-100)		100% 124/124 (97.1-100)	100% 22/22 (84.6-100)	100% 102/102 (96.5-100)	
K. oxytoca	-	100% 60/60 (94.0-100)	-	100% 60/60 (94.0-100)		100% 60/60 (94.0-100)	
K. pneumoniae	100% 24/24 (85.8-100)	100% 249/249 (98.5-100)	100% 17/17 (80.5-100)	100% 256/256 (98.6-100)	100% 10/10 (69.2-100)	100% 263/263 (98.6-100)	
Polymicrobial samples	100% 1/1 ^(د) (2.5-100)	100% 20/20 (83.2-100)		100% 21/21 (83.9-100)	0% 1/1 ^(k) (2.5-100)	100% 20/20 (83.2-100)	
TOTAL	100% 41/41 (91.4-100)	100% 1225/1225 (99.7-100)	100% 41/41 (91.4-100)	100% 1225/1225 (99.7-100)	100% 48/48 (92.6-100)	100% 1218/1218 (99.7-100)	

a. Three (3) Citrobacter freundii

b. Six (6) Enterobacter cloacae and four (4) Enterobacter cloacae complex

c. One (1) Klebsiella pneumoniae and Enterobacter cloacae complex

d. One (1) Acinetobacter baumannii complex

e. Two (2) Citrobacter freundii

f. Two (2) Enterobacter cloacae and four (4) Enterobacter cloacae complex

g. Three (3) Acinetobacter baumannii and one (1) Acinetobacter baumannii complex and one (1) Acinetobacter Iwoffii

h. One (1) Citrobacter braakii

i. Two (2) Enterobacter cloacae and four (4) Enterobacter cloacae complex

j. Two (2) Proteus mirabilis

k. One (1) Klebsiella pneumoniae and Enterobacter cloacae complex

Table 13: Summary of Organisms Containing Single and Dual Resistance Markers

BC-GN Resist	ance Marker Target	No. of Strains Tested	Species Containing the Resistance Marker
	CTX-M	70	Enterobacter cloacae (3), Escherichia coli (56), Klebsiella pneumoniae (11)
	OXA	20	Acinetobacter baumannii (12), Acinetobacter radioresistens (2), Escherichia coli (3), Klebsiella oxytoca (1), Klebsiella pneumoniae (2),
Presence of a	IMP	36	Klebsiella pneumoniae (4), Proteus mirabilis (2), Pseudomonas aeruginosa (22), Citrobacter braakii (1), Acinetobacter Iwoffi (1), Acinetobacter baumannii (1), Enterobacter cloacae (5),
Single Resistance	VIM	33	Citrobacter freundii (3), Enterobacter cloacae (9), Klebsiella pneumoniae (19), Pseudomonas aeruginosa (2)
Marker	KPC	43	Enterobacter cloacae (1), Klebsiella oxytoca (1), Citrobacter freundii (1), Klebsiella pneumoniae (39),Pseudomonas aeruginosa (1)
	NDM	9	Escherichia coli (2), Citrobacter freundii (2), Enterobacter cloacae (2), Klebsiella pneumoniae (3)
	TOTAL	211 (70%)	
	NDM/CTX-M	29	Enterobacter cloacae (3), Escherichia coli (12), Klebsiella pneumoniae (14)
	IMP/CTX-M	8	Enterobacter cloacae (1), Escherichia coli (1), Klebsiella pneumoniae (6)
D (OXA/CTX-M	36	Escherichia coli (13), Klebsiella pneumoniae (20), Klebsiella oxytoca (1), Enterobacter cloacae (1), Citrobacter braakii (1),
Presence of	KPC/CTX-M	5	Escherichia coli (2), Klebsiella pneumoniae (3)
Dual Resistance	VIM/CTX-M	4	Escherichia coli (1), Enterobacter cloacae (1), Klebsiella pneumoniae (2)
Markers	VIM/KPC	3	Klebsiella pneumoniae
IVIDI NCI S	OXA/IMP	3	Acinetobacter baumannii
Ī	OXA/NDM	2	Acinetobacter baumannii (1), Enterobacter cloacae (1)
	TOTAL		
GRA	ND TOTAL	301	

The results of **BC-GN** for KPC, OXA, NDM, VIM, and IMP (individually and combined) were compared to phenotypic antimicrobial susceptibility testing (AST) using Meropenem agar gradient diffusion for informational purposes only. The percent positive agreement (PPA) for this comparison was calculated as 100% x (TP/TP + FN). A true positive (TP) is positive by **BC-GN** for KPC, OXA, NDM, VIM, and/or IMP and resistant (R) or intermediate (I) to Meropenem. A false negative (FN) is negative by **BC-GN** for KPC, OXA, NDM, VIM, and/or IMP and resistant (R) or intermediate (I) to Meropenem. A false negative (FN) is negative percent agreement (NPA) for this comparison was calculated as 100% x (TN/TN + FP). A true negative percent agreement (NPA) for KPC, OXA, NDM, VIM, and/or IMP and susceptible (S) to Meropenem. A false positive (FP) is positive by **BC-GN** for KPC, OXA, NDM, VIM, and/or IMP and susceptible (S) to Meropenem. Results are provided in **Table 14** for 993 of the 1266 isolates tested from the same linked dataset utilized for **Table 11** and **Table 12**. *Carbapenem resistance in these organisms can be due to mechanisms other than acquisition of the KPC (bla_{IMP}), OXA (bla_{IMP}), NDM (bla_{IMP}), VIM (bla_{IMP}), or IMP (bla_{IMP}) gene(s).*

 Table 14:
 BC-GN Performance for KPC, OXA, NDM, VIM, and IMP and all Resistance Markers Combined as Compared to Phenotypic Antimicrobial Susceptibility Testing using Meropenem Agar Gradient Diffusion

		Positive and Negative Percent Agreement (PPA and NPA) Detection of Resistance Markers Versus Meropenem Agar Gradient Diffusion (Resistant (R) or Intermediate (I))												
BC-GN Panel Analyte Detected	n KF		КРС ОХ		DXA NDM		DM	VIM		IMP		"Combined Result" Data Analysis Algorithm (KPC, OXA, NDM, VIM, and/or IMP detected)		
		PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA	PPA	NPA	PPA(^{a)}	NPA(^{b)}	
Acinetobacter spp.	28	0% 0/8	100% 20/20	100% 8/8	90.0% 18/20	12.5% 1/8	100% 20/20	0% 0/8	100% 20/20	37.5% 3/8	100% 20/20	100% 8/8 (63.1-100)	90.0% 18/20 (68.3-98.8)	
Citrobacter spp.	31	33.3% 1/3	100% 28/28	0% 0/3	100% 28/28	33.3% 1/3	100% 28/28	33.3% 1/3	92.9% 26/28	0% 0/3	100% 28/28	100% 3/3 (29.2-100)	92.9% 26/28 (76.5-99.1)	
Enterobacter spp.	87	0% 0/5	100% 82/82	0% 0/5	100% 82/82	40.0% 2/5	100% 82/82	60.0% 3/5	96.3% 79/82	0% 0/5	96.3% 79/82	100% 5/5 (47.8-100)	97.7% 76/82 (84.8-97.3)	
Proteus spp.	49	0% 0/1	100% 48/48	0% 0/1	100% 48/48	0% 0/1	100% 48/48	0% 0/1	100% 48/48	0% 0/1	100% 48/48	0% 0/1 (0-75.5)	100% 48/48 (92.6-100)	
Escherichia coli	435	3.7% 1/27	99.8% 407/408	40.7% 11/27	99.5% 406/408	51.9% 14/27	100% 408/408	0% 0/27	100% 408/408	0% 0/27	100% 408/408	96.3% 26/27 (81.0-99.9)	99.3% 405/408 (97.9-99.9)	
Klebsiella pneumoniae	225	47.4% 36/76	98.7% 147/149	5.3% 4/76	97.3% 145/149	19.7% 15/76	100% 149/149	28.3% 20/76	99.3% 148/149	4.0% 3/76	97.9% 146/149	98.7% 75/76 (92.9-99.9)	93.3% 139/149 (88.0-96.7)	
Klebsiella oxytoca	50	100% 1/1	100% 49/49	0% 0/1	100% 49/49	0% 0/1	100% 49/49	0% 0/1	100% 49/49	0% 0/1	100% 49/49	100% 1/1 (2.5-100)	100% 49/49 (92.8-100)	
Pseudomonas aeruginosa	88	3.1% 1/32	100% 56/56	0% 0/32	100% 56/56	0% 0/32	100% 56/56	6.3% 2/32	100% 56/56	3.1% 1/32	100% 56/56	12.5% 4/32 (3.5-29.0)	100% 56/56 (93.6-100)	
Total	993	26.1% 40/153	99.6% 837/840	15.0% 23/153	99.1% 832/840	21.6% 33/153	100% 840/840	17.0% 26/153	99.3% 834/840	4.6% 7/153	99.3% 834/840	79.7% 122/153 (71.5-85.8)	97.1% 816/840 (95.8-98.2)	

- a) Carbapenem resistance in the organisms detected by **BC-GN** can be due to mechanisms other than acquisition of the KPC (bla_{KPC}), OXA (bla_{OXA}), NDM (bla_{NDM}), VIM (bla_{VIM}), or IMP (bla_{IMP}) gene(s).
- b) Detection of KPC, OXA, NDM, VIM, or IMP resistance markers may not always infer resistance to carbapenems.

The results of **BC-GN** for CTX-M were compared to phenotypic antimicrobial susceptibility testing (AST) using Ceftazidime and Ceftriaxone agar gradient diffusion for informational purposes only. The percent positive agreement (PPA) for this comparison was calculated as 100% x (TP/TP + FN). A true positive (TP) is positive by **BC-GN** for CTX-M and resistant (R) or intermediate (I) to Ceftazadime only or resistant (R) or intermediate (I) to Ceftazadime only or resistant (R) or intermediate (I) to Ceftazadime and/or Ceftriaxone. A false negative (FN) is negative by **BC-GN** for CTX-M and resistant (R) or intermediate (I) to Ceftazadime and/or Ceftriaxone. The negative percent agreement (NPA) for this comparison was calculated as 100% x (TN/TN + FP). A true negative (TN) is negative by **BC-GN** for CTX-M and susceptible (S) to Ceftazadime only or **ESBL resistance in these organisms can be due to mechanisms other than acquisition of the CTX-M (bla_{CTX-M}) gene.**

BC-GN Panel		Positive and Negative Percent Agreement (PPA) and NPA) Detection of Resistance Markers Versus Ceftazadime Only or Ceftazidime and/or Ceftriaxone Agar Gradient Diffusion								
Analyte Detected	n ^(a)	Ceftazadim		Ceftazadime (R) or (I) and/or Ceftriaxone (R) or (I)						
		PPA ^(c)	NPA ^(d)	PPA ^(c)	NPA ^(d)					
Acinetobacter spp.	28	0% 0/10	100% 18/18	0% 0/25	100% 3/3					
Acineiobaciei spp.	20	(0-30.9)	(81.5-100)	(0-13.7)	(29.2-100)					
		0%	100%	0%	100%					
Citrobacter spp.	31	0/10	21/21	0/11	20/20					
	_	(0-30.9)	(83.9-100)	(0-28.5)	(83.2-100)					
		10.0%	100%	12.1%	98.2%					
Enterobacter spp.	87	3/30	57/57	4/33	53/54					
		(2.1-26.5)	(93.7-100)	(3.4-28.2)	(90.1-100)					
		0%	100%	0%	100%					
Proteus spp. ^(b)	49	0/5	44/44	0/5	44/44					
		(0-52.2)	(92.0-100)	(0-52.2)	(92.0-100)					
		81.2%	96.5%	82.1%	100%					
Escherichia coli	435	56/69	353/366	69/84	351/351					
		(69.9-90.0)	(94.0-98.1)	(72.3-89.7)	(99.0-100)					
Klebsiella		33.7%	98.4%	34.6%	100%					
pneumoniae	225	34/101	122/124	36/104	121/121					
pheumoniae		(24.6-43.8)	(94.3-99.8)	(25.6-44.6)	(97.0-100)					
		0%	100%	0%	100%					
Klebsiella oxytoca	50	0/7	43/43	0/7	43/43					
		(0-41.0)	(91.8-100)	(0-41.0)	(91.8-100)					
Pseudomonas		0%	100%	0%	100%					
aeruginosa ^(b)	88	0/24	64/64	0/24	64/64					
aeruginosa		(0.0-14.3)	(94.4-100)	(0.0-14.3)	(94.4-100)					
		36.3%	98.0%	37.2%	99.9%					
Total	993	93/256	722/737	109/293	699/700					
		(30.4-42.6)	(96.7-98.9)	(31.7-43.0)	(99.2-100)					

 Table 15:
 BC-GN Performance for Detection of CTX-M as Compared to Phenotypic Antimicrobial Susceptibility

 Testing using Ceftazadime and Ceftriaxone Agar Gradient Diffusion

(a) Ceftazadime only and Ceftazadime and/or Ceftriaxone Agar Gradient Diffusion results are provided for 993 of the 1266 total isolates available.

(b) Only Ceftazidime results were calculated for *Proteus* spp. and *Pseudomonas aeruginosa--*Ceftriaxone results are not applicable per CLSI M100-S22.

(c) Ceftazadime only and/or Ceftriaxone resistance in the organisms detected by **BC-GN** can be due to mechanisms other than acquisition of the CTX-M (bla_{CTX-M}) gene.

(d) In vitro resistance to Ceftazadime or Ceftriaxone is not always demonstrated for specimens containing CTX-M.

B. Precision and Reproducibility

The **Precision Study** involved the testing of an 18-member panel, containing eight (8) unique specimens representing each target analyte detected by **BC-GN**, as well as two negative controls, one consisting of negative blood culture media only and the second containing an organism not detected by **BC-GN** (*Hafnia alvei*). The composition of the panel is presented in **Table 16**, together with the final call rates, call accuracy and two-sided 95% confidence limits obtained for the study. The 18-member panel was tested in-house by Nanosphere twice daily by two operators on twelve (12) non-consecutive days for a total of forty-eight (48) replicates per specimen. Except for the negative controls, organisms were tested at Bottle Positivity (BP) and Bottle Positivity + 8 hours incubation (BP+8h).

A total of 864 initial tests were conducted. There were five (5) Pre-Analytical Errors; these tests were repeated and valid test results were obtained for a pre-AE rate of 0.6% (5/880). There were eleven (11) initial No Calls, which were repeated once. All but one of these repeats generated a valid result, yielding a final call rate for the study (number of valid tests/total tests conducted) of 863/864 = 99.9%.

There was one inaccurate call involving a *Klebsiella pneumoniae*/OXA/CTX-M specimen at the BP+8h timepoint, whereby **BC-GN** unexpectedly detected "K. oxytoca", in addition to the correct expected calls of "K. pneumoniae", "OXA" and "CTX-M", resulting in a call accuracy of 862/863 = 99.9% for the study.

Table 16: Precision Study Panel Composition and Test Results

ł	Sample			Bottle P	ositivity	Bottle Positivity + 8 hours		
Organism/Specimen	Resistance Marker(s)	Source No.	Expected Call(s)	Final Call Rate	Accuracy	Final Call Rate	Accuracy	
Negative Control – Blood Culture Media Only	N/A	N/A	Not Detected	100% (48/48) 92.6-100	100% (48/48) 92.6-100	-	-	
Hafnia alvei	N/A	ATCC 13337	Not Detected	97.9% (47/48) 88.9-100	100% (47/47) 92.5-100	-	-	
Acinetobacter baumanii	OXA	IHMA 128307	Acinetobacter spp. & OXA	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	
Citrobacter freundii	VIM	IHMA 549813	Citrobacter spp. & VIM	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	
Enterobacter cloacae	KPC	IHMA 550287	Enterobacter spp. & KPC	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	
Escherichia coli	NDM	IHMA 449261	Escherichia coli & NDM	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	
Klebsiella pneumoniae	OXA, CTX-M	JMI 18518	Klebsiella pneumoniae & OXA & CTX-M	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	97.9% (47/48) 88.9-100	
Klebsiella oxytoca	CTX-M	IHMA 683079	<i>Klebsiella oxytoca</i> & CTX-M	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	
Proteus mirabilis	N/A	ATCC 12453	Proteus spp.	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	
Pseudomonas aeruginosa	IMP	IHMA 576602	Pseudomonas aeruginosa & IMP	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	100% (48/48) 92.6-100	

The *Reproducibility Study* involved the testing of an 18-member panel, containing eight (8) unique specimens representing each target analyte detected by **BC-GN**, as well as two negative controls, one consisting of negative blood culture media only and the second containing an organism not detected by **BC-GN** (*Morganella morganii*). The composition of the panel is presented in **Table 17**, together with the final call rates, call accuracy and two-sided 95% confidence limits obtained for the study. The 18-member panel was tested at three (3) external sites twice daily in triplicate on five (5) non-consecutive days for a total of 90 replicates per specimen. Except for the negative controls, organisms were tested at Bottle Positivity (BP) and Bottle Positivity + 8 hours incubation (BP+8h).

A total of 1620 initial tests were conducted. There were nine (9) Pre-Analytical Errors; these tests were repeated and valid test results were obtained for a pre-AE rate of 0.5% (9/1652). There were 23 initial No Calls, which were repeated once. All of these repeats generated a valid result, yielding a final call rate for the study (number of valid tests/total tests conducted) and accuracy of 100% (1620/1620).

:	Sample			Bottle P	ositivity	Bottle Positivity + 8 hours		
Organism/Specimen	Resistance Marker(s)	Source No.	Expected Call(s)	Final Call Rate	Accuracy	Final Call Rate	Accuracy	
Negative Control – Blood Culture Media Only	N/A	N/A	Not Detected	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	-	-	
Morganella morganii	N/A	ATCC 25830	Not Detected	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	-	-	
Acinetobacter baumanii	OXA	IHMA 128307	Acinetobacter spp. & OXA	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Citrobacter freundii	VIM	IHMA 549813	Citrobacter spp. & VIM	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Enterobacter cloacae	KPC	IHMA 550287	Enterobacter spp. & KPC	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Escherichia coli	NDM	IHMA 449261	Escherichia coli & NDM	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Klebsiella pneumoniae	OXA, CTX-M	JMI 18518	Klebsiella pneumoniae & OXA & CTX-M	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Klebsiella oxytoca	CTX-M	IHMA 683079	Klebsiella oxytoca & CTX-M	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Proteus mirabilis	N/A	ATCC 12453	Proteus spp.	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	
Pseudomonas aeruginosa	IMP	IHMA 576602	Pseudomonas aeruginosa & IMP	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	100% 90/90 (96.0-100)	

 Table 17:
 Reproducibility Test Results

C. Analytical Sensitivity (Limit of Detection)

Analytical sensitivity or limit of detection (LOD) for **BC-GN** was determined for each **BC-GN** genus level target with tests of two representative species:

Acinetobacter.	Acinetobacter baumanii (OXA), Acinetobacter calcoaceticus
Citrobacter.	Citrobacter freundii (VIM), Citrobacter koseri
Enterobacter.	Enterobacter cloacae (KPC), Enterobacter aerogenes
Proteus:	Proteus mirabilis, Proteus vulgaris

For each **BC-GN** species target, one representative strain was tested, including: *Escherichia coli* (NDM), *Klebsiella pneumoniae* (OXA, CTX-M), *Klebsiella oxytoca* (CTX-M), and *Pseudomonas aeruginosa* (IMP).

The LOD was assessed and confirmed by using bacterial strains with established titers. By definition, the LOD is the lowest target concentration that both bacterial and resistance marker targets can be detected approximately 95% of the time. For each strain, the dilution series began with the sample obtained at "bottle positivity". The dilution series were prepared by using a diluent matrix that comprised blood culture broth containing charcoal, human blood, and a common commensal skin bacteria (*Staphylococcus epidermidis*) at a minimum concentration of ~10⁷ CFU/mL. Each dilution was tested in replicates of four. The putative LOD was the lowest concentration level where all the replicates for the analyte were 'Detected'. Once the putative LOD was established, 20 replicate samples were tested to confirm the LOD.

The LOD's were determined to be:

Target	LOD (CFU/mL)
Acinetobacter spp.	4.0×10^5 to 4.6×10^6
Citrobacter spp.	6.9x10 ⁶ to 1.3x10 ⁷
Enterobacter spp.	4.1x10 ⁶ to 1.1x10 ⁷
Proteus spp.	1.9x10 ⁵ to 7.7x10 ⁵
Klebsiella pneumoniae	1.2x10 ⁷
Klebsiella oxytoca	2.0x10 ⁷
Escherichia coli	3.7x10 ⁶
Pseudomonas aeruginosa	2.3x10 ⁷

D. Analytical Reactivity (Inclusivity)

Analytical reactivity was determined for **BC-GN** by testing a panel of 195 strains of 44 different bacterial species covering the genetic diversity of each **BC-GN** target and antibiotic resistance markers, as summarized below for the species targets and in **Table 18** for the genus level targets:

- Klebsiella oxytoca (10)
- Klebsiella pneumoniae (25)
- Pseudomonas aeruginosa (13)
- E. coli (17) and Shigella spp. (8)

Table 18: Organisms Tested for Inclusivity amongst the BC-GN Test Genus Level Bacterial Targets

	Total No. of	Species Tested					
BC-GN Target	Strains Tested	Name (No. of Strains)	Total				
Acinetobacter spp.*	36	A. baylyi (2), A. baumannii (8), A. bereziniae (1), A. calcoaceticus (5), A. guillouiae (1), A. haemolyticus (5), A. johnsonii (3), A. junii (3), A. Iwoffi (3), A. radioresistens (3), A. schindleri (1), and A. ursingii (1)	12				
Citrobacter spp.	41	C. amalonaticus (2), C. braakii (5), C. farmeri (2), C. freundii (5), C. gillenii (3), C. koseri (5), C. murliniae (3), C. rodentium (5), C. sedlakii (3), C. werkmanii (3), and C. youngae (5)	11				
Enterobacter spp*. 29		E. aerogenes (5), E. amnigenus (2), E. asburiae (4), E. cancerogenus (5), E. cloacae (8), E. hormaechei (3), E. ludwigii (1), and E. nimipressuralis/E. orzae (1)	8				
Proteus spp.	16	P. hauseri (2), P. mirabilis (6), P. myxofaciens (1), P. penneri (2), and P. vulgaris (5)	5				

* BC-GN does not detect Acinetobacter tartarogenes, Enterobacter gergoviae, Enterobacter kobei, and Enterobacter pyrinus.

Of these 195 strains, 79 contained one or more resistance markers (RMs) associated with 11 different bacterial species including a total of 38 strains containing CTX-M, 17 containing OXA, 12 containing IMP, 10 containing VIM, 10 containing KPC, and 9 containing NDM (see **Table 19**). Separately, *in silico* analysis was performed by aligning the assay probes for each of the strains/organisms against available GenBank sequence entries to ensure that **BC-GN** is able to detect these strains.

Traditional Detected by Wet Testing			l by Wet Testing	Predicted to Be Detected based on In Silico Analysis ²					
Marker	Subgroups	No. of Samples	Type Tested	Types With Identical Probe Binding Sites to Wet Tested Types(1)	Types with in Silico Data Only				
	CTX-M-1	146	1, 3, 12, 15, 22, 28, 30, 55, 79	11, 23, 29, 32, 33, 36, 37, 42, 52, 54, 57, 58, 60, 61, 62, 66, 69, 71, 72, 80, 82, 88, 96, 101, 107, 109, 114, 116, 117, 133	10, 34, 53, 68, 108, 123, 132				
Μ	CTX-M-2	6	2, 31	4, 5, 6, 7, 20, 43, 44, 56, 59, 77, 92, 95, 97, 124, 131	74, 75, 76				
CTX-M	CTX-M-8	3	8	-	40, 63				
C	CTX-M-9	34	9, 14, 24, 27, 45	102, 104, 105, 106, 110, 111, 112, 113, 121, 122, 126, 13, 134, 16, 17, 18, 19, 21, 38, 46, 47, 48, 49, 50, 51, 64, 65, 67, 81, 83, 84, 85, 86, 87, 90, 93, 98, 99	-				
	CTX-M-25	1	39	25, 26, 41, 89, 91, 94, 100	78				
	IMP	59	1, 4, 7, 8, 13, 15, 16, 18, 26, 27	2, 5, 6, 10, 11, 19, 20, 21, 24, 25, 28, 29, 30, 33, 37, 38, 40, 41, 42	3, 9, 12, 14, 22, 32, 34, 35				
	KPC	61	2, 3, 4, 5, 11	1, 6, 7, 8, 9, 10, 12, 13, 14	-				
	NDM	50	1, 4, 6	2, 3, 5, 7	-				
	23	18	23	27, 49, 73, 133, 146, 165, 166, 167, 168, 169, 170, 171, 225, 239	-				
OXA	40	5	24, 40	25, 26, 33, 72, 139, 160, 207	143, 182, 231				
Ö	48 48 48, 162		48, 162	163, 181, 199, 204, 232	-				
	58	7	58	96, 97, 164	-				
	VIM	51	1, 2, 4, 5, 7, 26, 27, 28, 33	3, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 29, 30, 31, 32, 34, 35, 36, 37	13				

Table 19:	Summary of RMs Detected by Wet testing or Predicted to be Detected based on in silico Analysis
-----------	--

⁽¹⁾ The **BC-GN** probe binding sites in these types are identical to those in the wet tested types; therefore, **BC-GN** performance for these types is expected to be the same as the wet tested types.

⁽²⁾ These specific resistance marker types and subtypes were evaluated by in silico analysis only.

The resistance makers in Table 19 above were associated with the bacterial species identified in Table 20 and Table 21, which provide a listing of the resistance markers linked to organisms that were wet tested during the Clinical Study and Analytical Studies, respectively. Please refer to Table 11 and Table 12 for related performance data. Table 22 provides a summary of the organisms tested in the inclusivity study that contained single and dual resistance markers.

BC-GN-Detected Linked		СТХ-М		ΟΧΑ	КРС		VIM		VIM NDM		IMP		
Organism	п	Types (#) ⁽¹⁾	п	Types (#)	п	Types (#)	п	Types (#)	п	Types (#)	п	Types (#)	
A. baumanii ⁽²⁾	-	-	15	23	-	-	-	-	1	1	4	1(2), 4	
A. Iwoffii	-	-	1	-	1	-	-	-	-	-	1	-	
A. radioresistens	-	-	2	-	1	-	1	-	-	-	1	-	
C. braakii	-	-	1	48	1	-	•	-	-	-	1	-	
C. freundii	-	-	1	-	1	3	3	1(2), 2	2	1(2)	1	-	
E. cloacae ⁽²⁾	9	3, 14, 15(3)	2	48	1	-	10	1(7), 4	6	1(5)	6	-	
E. coli	85	1, 15(22), 27, 55	16	48(16)	2	2(2)	1	1	1 5	1(11), 6	1	-	
K. oxytoca	1	15	2	48(2)	1	2	-	-	-	-	-	-	
K. pneumoniae	56	15(38), 27(3)	22	48(21)	4 5	2(22), 3(4), 11(2)	24	1(16), 26(3), 33	1 7	1(16)	10	26(3)	
P. mirabilis	-	-	-	-	•	-	-	-	-	-	2	27(2)	
P. aeruginosa	-	-	-	-	1	5	2	1	-	-	22	7(2), 13	
Polymicrobial	-	-	1(3)	-	-	-	1(4)	-	-	-	1(4)	-	

Table 20: Summary of Resistance Marker Types Linked to Organisms ⁽¹⁾ Wet Tested – Clinic	al Study
--	----------

Only accounts for specimens for which specific resistance marker type identification information was available (1)

Includes organisms identified as A. *baumanii* complex or E. *cloacae* complex, respectively Escherichia coli and Acinetobacter baumannii complex and Enterococcus spp. (2) (3) (4)

Klebsiella pneumoniae and Enterobacter cloacae complex

	Table 21:	Summary of Resistance	Marker Types Li	inked to Organisms ⁽¹⁾	⁾ Wet Tested – Analytical Studies
--	-----------	-----------------------	-----------------	-----------------------------------	--

Linked		СТХ-М		ΟΧΑ		КРС		VIM		NDM	IMP	
Organism	n	Types (#) ⁽²⁾	n	Types (#)	n	Types (#)	n	Types (#)	n	Types (#)	n	Types (#)
A. baumanii ⁽³⁾	-	-	8	23(4), 24/40, 58(3)	-	-	1	2	-	-	-	-
A. Iwoffii	-	-	1	58	-	-	-	-	-	-	-	-
A. radioresistens	-	-	3	23(3)	-	-	-	-	-	-	-	-
C. freundii	1	9	-	-	2	2, 3	1	-	-	-	-	-
E. cloacae ⁽³⁾	5	2, 9, 12, 15, 30	-	-	1	-	1	5	1	1	-	-
E. hormaechei	-	-	-	-	1	-	-	-	-	-	-	-
E. coli	17	1(2), 2, 3, 8(2), 14, 15(5), 24, 27, 28, 55	2	48(2)	-	-	-	-	5	1(2), 4(2), 6	1	1
K. oxytoca	3	14, 31, 34	-	-	-	-	-	-	-	-	-	-
K. pneumoniae	13	1(4), 8, 12, 14, 15(3), 22, 39, 79	3	48(2), 162	6	2(2), 3, 4, 11(2)	3	1, 26, 27	3	1(2)	4	8, 26(2)
P. mirabilis	-	-	-	-	-	-	-	-	-	-	1	27
P. aeruginosa	-	-	-	-	-	-	4	1, 2, 7, 28	-	-	6	1, 7, 15

Several organisms were shown to contain two or more resistance markers; these are accounted for separately in this table (1)

(2) (3) Only accounts for specimens for which specific resistance marker type identification information was available

Includes organisms identified as A. baumanii complex or E. cloacae complex, respectively

Table 22:	Organisms Tested for	r Inclusivity amongst the BC-GN	Test Resistance Marker Targets
-----------	----------------------	---------------------------------	--------------------------------

BC-GN Resistance Total No. Marker Target Strains Teste		Total No. Strains Tested	Species Tested Containing the Resistance Marker		
	CTX-M	22	Citrobacter freundii (1), Enterobacter cloacae (4), Escherichia coli (9), Klebsiella oxytoca (3), Klebsiella pneumoniae (5)		
	OXA	11	Acinetobacter baumannii (7), Acinetobacter Iwoffi (1), Acinetobacter radioresistens (3)		
Presence of a Single Resistance	IMP	10	Klebsiella pneumoniae (3), Proteus mirabilis (1), Pseudomonas aeruginosa (6)		
Marker	VIM	10	Acinetobacter baumannii (1), Citrobacter freundii (1), Enterobacter cloacae (1), Klebsiella pneumoniae (3), Pseudomonas aeruginosa (4)		
	KPC	9	Enterobacter cloacae (1), Enterobacter hormaechei (1), Citrobacter freundii (2), Klebsiella pneumoniae (5)		
	NDM	1	Escherichia coli		
	NDM/CTX-M	8	Enterobacter cloacae (1), Escherichia coli (4), Klebsiella pneumoniae (3)		
Presence of Dual	IMP/CTX-M	2	Escherichia coli (1), Klebsiella pneumoniae (1)		
Resistance Markers	OXA/CTX-M	5	Escherichia coli (2), Klebsiella pneumoniae (3)		
	KPC/CTX-M	1	Klebsiella pneumoniae (1)		

All strains were grown to bottle positivity in blood culture bottles in automated blood culture instruments. Samples were tested for purity and organism concentrations were determined by colony count (CFU/mL). Samples were tested in triplicate with **BC-GN**.

The overall accuracy of **BC-GN** for the detection of all bacterial and resistance marker targets tested was 98.3% (616/627). False negative test results were observed, specific to the detection of the OXA resistance marker present in two strains of *Acinetobacter radioresistens*. Of the 13 strains tested containing OXA, tested in triplicate, OXA was detected at a rate of 100% for all but two strains of *A. radioresistens* [ATCC 43999 (initial 2/3 replicates; repeat testing 5/9 replicates for a total of 7/12 replicates), ATCC 49000 (initial 0/3 replicates; repeat testing 8/9 replicates for a total of 8/12 replicates)]; however, in both cases, the bacterial target was correctly identified by **BC-GN** as "Acinetobacter".

Additionally, amongst the two strains each of *Citrobacter amalonaticus* and *Citrobacter farmeri* tested, only one strain of *Citrobacter amalonaticus* was not detected at a rate of 100% upon replicate testing (ATCC 25405, [initial 3/3 replicates; repeat testing 4/6 replicates for a total of 7/9 replicates]). However, *in silico* analysis suggested that both of these species could potentially yield false negative results with **BC-GN** based upon probe sequence homology mismatches (see "Limitations").

Eight *Shigella* strains representing four species were tested including *S. boydii* (2), *S. dysenteriae* (2), *S. flexneri* (2), and *S. sonnei* (2). All were detected by **BC-GN** as "E. coli Detected".

E. Analytical Specificity (Exclusivity)

Analytical specificity was assessed using organisms phylogenetically related to panel organisms detected by **BC-GN**, organisms with unknown genomes, common blood-borne pathogens, as well as organisms potentially present as contaminants in blood culture specimens. The exclusivity samples were divided into two distinct panels of organisms.

The first panel consisted of 172 "non-**BC-GN** panel" organisms, which were not expected to be detected by **BC-GN**, including:

- Eighty-eight (88) gram-negative bacteria including *Acinetobacter baumanii* containing OXA-51 (OXA-51 is not detected by **BC-GN**),
- Seventy-one (71) gram-positive bacteria,
- Six (6) gram-negative cocci bacteria, and
- Seven (7) yeast strains

Of the 172 strains tested, 159 demonstrated no cross-reactivity with **BC-GN** while thirteen organisms were determined to cross-react with **BC-GN** panel analytes, as listed in **Table 23**. Specimens containing *Shigella* spp. or *E. coli* will be reported as "E. coli detected". See "Limitations" section for additional information. See **Tables 24** to **27** for a more detailed listing of the organisms tested.

BC-GN Target for Which Cross Reactivity Observed	Cross Reactive Organism/Resistance Markers	
Citrobacter spp.	Buttiauxella gaviniae	
Chrobacter spp.	Enteric group 137	
Enterchaster ann	Klebsiella variicola	
Enterobacter spp.	Leclercia adecarboxylata	
	Escherichia albertii	
	S. dysenteriae	
Escherichia coli	S. flexneri	
	S. boydii	
	S. sonnei	
	Kluyvera ascorbata	
Klabajalla avertaga	Raoultella ornithinolytica	
Klebsiella oxytoca	Raoultella planticola	
	Cedecea davisae	
	Kluyvera georgiana*	
	Leminorella grimontii	
	Enterococcus raftinosus	
CTX-M	Candida parapsilosis	
	blaKLUA	
	blaKLUG	
	blaKLUY	

*Organism confirmed by bi-directional sequencing to contain CTX-M

The second panel tested for exclusivity consisted of the 195 "**BC-GN** panel" organisms representing 44 different bacterial species listed in **Section D** above, which in total comprised the analytical inclusivity study samples and no cross-reactivity was observed between the panel members.

Customer Service or Technical Service: In the U.S. Phone: 1-888-837-4436 (toll free) E-Mail: productsupport@nanosphere.us Outside the U.S.: Contact your local Nanosphere distributor i www.e-labeling.eu/NAN021

Accrete/bolic(eff Infraronalis grimonili direction Aggregabacler aptrophius Leminoralia direction herrologican micra Bactonoidos fragilis Morganelia morgani herrologican addirection Bactonoidos fragilis Morganelia morgani herrologican periossenus Bactonoidos fragilis Partoce addirection periossenus Bactonoidos fragilis Perioscenus anamobas Bactonoidos periossenus anamobas anamobas Bactonoidos periossenus anamobas anamobas Bactonoido destasonis mendace fragonis periossenus Candobacterium periossenus bivis mendace bivis concolactorias Badiabal georgica Prevolella bivis concolactorias bieneminamo Candobacterium hominis neelando fragonis fragonis fragonis Connobacter adeviseroni fragonis <	Table 24:		gative Organis	ms Tested	Table 25:	Gram P	ositive Organisms	Tested*
Acarabobacteri Intrinoralia primontii Arcanobacterium Bernardiae Microsoccus Ideus Aggegalbacteri aphrophius Partoa aggegalbacteri	Genus	Species	Genus	Species	Genus	Species	Genus	Species
demonsion diminica diminica diminica diminica Arcanobacterium fragilis Morganella nobardi hobardi Baclennichs fragilis Morganella nobardi hobardi Informita Pantoca aggiomanas inchardi hobardica periosacter Bachennichs Morganella aggiomanas aggiomanas inchardi hobardica periosacter anenoblus Bachennichs Morganella aggiomanas aggiomanas inchardis Morganella aportosacter Bachardice Morganella aggiomanas aggiomanas inchardis Morganella aportosacter aportosacter aportosacter aportosacter aportosacter aportosacter aportosacter aportosacter inchardis Morganella aportosacter aportosacter aportosacter aportosacter aportosacter aportosacter inchardis Morganella aportosacter Morganella aportosacter inchardis Morganella inchardis Morganella aportosacter a	Acinetobacter	tartarogenes	Leclercia	adecarboxylata	Aerococcus	viridans	Listeria	monocytogenes
Aggregatoder aphrophilo acharonica periodicacion micra micra Bactonidos Faglis Morganella angomia genosacion periodicacion acores dicidicacion dicidicacions tocian clastificacion dicidicacions periodicacions clastificacion clastificacion dicidicacions tocian clastificacion clastificacion clastificacion dicidicacions tocian clastificacion clastificacion clastificacion tocinin dicidicacion tocinin tocinicacion tocinicacion tocinicacion tocinicacion tocinicacion tocinic		Lominoralla	grimontii	Arcanobacterium	bernardiae	Micrococcus	luteus	
backonides uniformis uniformis hetalobaricoru vesicularis Pantosia agglomanas dissonis Partoscia pentosaceus mardae Bevundimonas burkholderia diminula vesicularis Pasteurella amogenes dissonis mardae sphaercus mardae sphaercus sphaercus Paptostoptococcus anacobius Burkholderia cepacia Prevotelle aerogenes futurigensis Patoucalerium acres Carindocterium carindocularium neteri pervotelle buika melaninogenica futurigensis Prevotelle acres Carindocterium neteri prevotelle buica dostado futurigensis Potioacecus muclagiones Carindocterium neteri prevotelle actalfaciens retly futurigensis Potioacecus acres Costridium filosopis actalfaciens futurigensis Potioacecus acres Costridium filosopis filosopis filosopis filosopis filosopis Costridium gentis filosopis filosopis filosopis filosopis Costridium filosopis filosopis filosopis<	Aggregatibacter	aphrophilus	Lemmorena	richardii	Arcanobactenum	haemolyticum	Parvimonas	micra
Backenoldes uniformis Partese aggenes fielenitamis pentosaceus Brevnudimonas diminuta Pasteurella aeorgenes muticodia Pentococcus idreus idreus Burkholderia cepaci Pissononas shigelioides Bacillus Bacillus Pentococcus idreus idreus Burkholderia cepaci Pervotella aeorgenes celluosimicobium Pentococcus idreus idreus Cardiobacterium hominis Provotella melanicogenios idreus idreus idreus interes Codeceae laogagi Providenica rutgenis idreus interes epidermidis Conamonas testosteroni filoraphis filoraphis filoraphis pertococcus interes interes Einencie group 137 Enteric group 137 filoraphis filoraphis interes interes Paradocheruim nuclealines perturicogeni gaginarum interes interes Einteri group 137 Entericogroup 137		fragilis	Morganella	morganii		cereus	Pediococcus	acidilactici
uniform Parabactunides merdae dissonis merdae Spherical Spherical Spherical Spherical Approximation Approximation Brwundinoma diminda Pasturella aaroganas Huringiansis Perpositionaccium Accuit Brwundinoma gaviniar Pasturella aaroganas Subilis Perpositionaccium Accuit Carlobactoriu forminis Provotalla Boria Celluosinicrosti Lurba Cellurba		ovatus	Pantoea	agglomerans		licheniformis		pentosaceus
Initiational Breundinucus Sundialei Pasteurella eerogenes multoida Baitonal eerogenes multoida Baitonal eerogenes multoida Baitonal eerogenes Baitonal multoida Pancoccus eeros Baitonal eeros Burkhalderi capacial gaviniae Pestoural gaviniae Pestoural assistationa Beinorana shigaliolaes Baitonal gaviniae Pancoccus gaviniae Pancoccus eeros Pancoccus gaviniae Celulasini control gaviniae Cardioacterium (advissae Pervolella donicola Biblias Paroidencia Columonas Intra total donicola Cardioacterium (advissae Pervolella donicola Interim donicola Interimation (advissae Pervolella donicola Interimation (advissae Interimation (advissae Septicum Septicum Interimation (advissae Comobacteri mundioacterium (advissaiti Conobacteri interimation (advissaiti Eleanella Sestaatii (huna Interimation (advissaiti filuorescans Interimation (advissaiti filuorescans Septicum Septicum Interimation (advissaiti filuorescans Eleanela Gardoocras Bibliae Intereduceris filuorescans Feroidoocras Septicum Septicum Eleanela Gardoocras Bibliae Intereduceris filuor	Dacieroides	uniformis	Darahastaraidaa	distasonis	Bacillus	sphaericus	Peptostreptococcus	anaerobius
Brevundimona versicularisAmilio dia milloidiaHuriangenica milloidiaHuriangenica colusionicolumNouriNouriBurkholdeniacapaciaPlesiomonasshigoliolosLifermeniansRothiadentocanosa consolubateriumBurkholdeniagewiniae concorporpaga concorporpagacohraceamilloiningenica buccaeLifermeniansRothiadentocanosaCadiobacteriumhominismilloiningenica buccaecolustificationicolustificationicolustificationiCadeocalangenia buccaealcalficiensgeldinicinnuturiProvidenciaratiguicolustificationigeldinicinConabacternuturialcalifociensgeldinicinConabactermulgenisialcalifociensgeldinicinConabactermulgenisialcalifociensfilterenisiConabactermulgenisialcalifociensgeldinicinConabactermulgenisialcalifociensfilterenisiEiteneliacorondensfilterenisigeldinicinEiteneliatardafilterenisigeldinicinEiteneliatardafilterenisigeldicinaEiteneliatardafilterenisifilterenisiEiteneliatardafilterenisifilterenisiEiteneliatardafilterenisifilterenisiEiteneliatardafilterenisifilterenisiEiteneliatardafilterenisifilterenisiEiteneliatardafilterenisifilt		thetaiotamicron	Falabacterolues	merdae		subtilis	Planacacus	citreus
vescularismulciodiaCelularismicrobiumCelularismicrobiumCelularismicrobiumColumonasPropionibacturiumacresButhacxellagaviniaePhesiomanasshigelioloisCeluluonasIturbataRothiadenticariosaCardiobacteriumhominismelarinogenicabiolaColumonasNateriaRothiaGentracoriosaCardiobacteriumdevisaedenticariosaColumonasSobiaColumonasRothiaGentracoriosaCardiobacteriumdevisaedenticariosaColumonasSobiaColumonasColumonasRothiaGentracoriosaComanorastestosterionireligeristaatiiTegeriaSobiaConrobacteriumRothiaGentracoriosaLipdurensisCondubcteristakazikiregiorisiStafiliTradiFragiRothiaGentracoriosaLipdurensisCondubcteristakazikifiloraFragiFragiConstelluturiStafilituriStafilituriDelifiaaddovarasFragionaFragiocanaFragiocanaStafilituriTerneduceGentracoriosaLipdurensisEnteric group 137Enteric group 137Enteric group 137InterneduisFragionaFragionaFragionaGeneralisGeneralisFusobacteriumnercipanapalencicpalencicFragionaGeneralisGeneralisGeneralisFusobacteriumnercipanaPalencicSalmonellaPalencicFragionaFragionaFragionaElizabet	Provundimonas	diminuta	Pactouralla	aerogenes		thuringiensis	Flanococcus	kocurii
Buttiauxella Capnocytophaga Cardiobacterium Indenicogenica Cardiobacterium Indenicogenica Cardiobacterium Indenicogenica Cardiobacterium Indenicogenica denicola biria materination denicola Bottia Duccea denicola Bottia Duccea denicola Bottia Duccea denicola Cardiobacterium Cardiobacterium Indeni Cardiobacterium Interi Constantia Providencia biria datalifacions religeni Constinuity denicola Bottia Stariti Bottia Bastofia Bottia Stariti Bottia Bastofia Bottia Bastofia Bottia Bastofia Bottia Bastofia Bottia Bastofia Bastofia Bottia Bastofia Bastofia Bottia Bastofia Bastofia Bottia Bastofia Bastofia Bastotia Bastofia Bastofia	Dievanamonas	vesicularis	i asteurena	multocida	Cellulosimicrobium	cellulans	Propionibacterium	acnes
Capnocydophaga Ochracea Prevotella melaninogenica buccae Construction adisian Cardiobacterium Aninis Pervotella denicae septicum gepdemilis Cedecea lapagei Prevotella acalifaciens septicum septicum gepdemilis Comanonas testosteroni sekazski retigeri schazski schazski <td< td=""><td>Burkholderia</td><td>cepacia</td><td>Plesiomonas</td><td>shigelloides</td><td>Cellumonas</td><td>turbata</td><td>Rothia</td><td>dentocariosa</td></td<>	Burkholderia	cepacia	Plesiomonas	shigelloides	Cellumonas	turbata	Rothia	dentocariosa
Cardiobacterium hominis Prevedela buccae Constraint genfangen genfangen <thgenfangen< th=""> <thgenfangen< th=""> <t< td=""><td>Buttiauxella</td><td>gaviniae</td><td></td><td>bivia</td><td></td><td>bifermentans</td><td>Rothia (Stomatococcus)</td><td>mucilaginosa</td></t<></thgenfangen<></thgenfangen<>	Buttiauxella	gaviniae		bivia		bifermentans	Rothia (Stomatococcus)	mucilaginosa
Cardiobacterium hominis buccae Clossifidium perfragens capage epidemidis Cadecee Tapagei denicola denicola septicum septicum epidemidis epidemidis Comanonas testosteroni rettgeri suarii suarii septicum finamosus intermadus heem0/ficus heeficis heem0/ficus heem0/ficus	Capnocytophaga	ochracea	Provotalla	melaninogenica		clostridioforme		aureus
Cedecea Iapagei neteri Providencia alcalifaciens retigeri tertium Staphylococcus heemolyticus Connamoas testostoroni istuartii intermedius intermedius intermedius Conobacter sakazaki sakazaki intermedius intermedius intermedius Deifta addovorans intermedius finderescens genitalium genitalium genitalium genitalium genitalium gadactae agalactae agal	Cardiobacterium	hominis	Prevoleila	buccae	Clostridium	perfringens		caprae
Instein Providencia rettgeri Comamonas testosteroni stuatii stuatii intermedius intermedius intermedius Conobacter sakazakii alcaligenes intermedius intermedius intermedius Deiflia acidovorans fragi genitalium schiefferi intermedius Eikenella corordens fuva filorescens genitalium schiefferi Edwardsiella tarda fluorescens intermedius intermedius Etheric group 137 Enteric group 137 intermedius gergovice potricologena mendocina mendocina intermedius intermedius potricologena pertricologena pertricologena galianarm faecalis faecalis Elizabethkingia menicana Palanciola planciola faecalis faecalis Evabacterium nucleatum Salmonella enterica subsp enterica serovar Barelijy faliae		davisae		denticola		septicum		epidermidis
Interin Providencia refigeri Camamonas testosteroni stuarii Conobacter sakazakii muyijensi Delifia acidovorans intermedius Eikenella corootes fuoraphis gentalium gentalium Eikenella corootes fuoraphis gentalium gentalium agalaciae Eikenella corootes fuoraphis fuoraphis gentalium gentalium agalaciae Eikenella corootes fuorascens fuoraphis gentalium gentalium gentalium gentalium gentalium agalaciae Eikenebacter fuorascens fuorascens fuorascens striatum striatum gentalium gent	Cedecea	lapagei		alcalifaciens		tertium	Charlestone	haemolyticus
Sakazakii muyijensii sakazakii muyijensii kalaligenes chloraphis flavescens gentalium lugdunensis schleiferi Deltha acidovorans fn/oraphis fggi schleiferi gglatamicum gentalium schleiferi Eikenella corordens fu/urescens fgutorescens gentalium gglatamicum gentalium aglactiae constellaus constellaus constellaus constellaus constellaus constellaus constellaus constellaus adures		neteri	Providencia	rettgeri		bovis	Staphylococcus	hominis
Cronobacter muyljensii schleiteri Delflia acidovorans Eikenela corrodens Edwardsiella tarda Edwardsiella tarda Enteric group 137 Enteric group 137 gergoviae pseudomonas Pseudomonas mendocina mucidolens muridolens nitroreducers pertucinogena blattae protucinogena fulva subzeri vurineris vuronii Ettareani menigoseptica Recorderium nucleatum fugusonii parainfluenzae fungella americana fungella americana fungella americana fungella americana fungella servar Barelliy enterica subsp enterica gervar Barelliy enterica subsp enterica servar Barelliy fungella alvei fungella alvei fungella stenotrophomonas fungella kingae fungella stenotrophomonas	Comamonas	testosteroni		stuartii		diphtheriae		intermedius
Image Chloraphis Gentlaium Schleiferi Deiffia acidovorans Fragi fragi gentlaium gentlaium gentlaium gentlaium gentlaium galactiae Edwardsiella tarda filuo filuo filuo filuo gentlaium gentlaium galactiae anginosus Enteric group 137 Enteric group 137 Enteric group 137 Fineric group 137 mendoclia mendoclia filuo gentlaium constellatus constellatus pyrinus Perucinogena mendoclias mendoclia gentlaium striatum gentlaium	Oranghantan	sakazakii		alcaligenes		flavescens		lugdunensis
Eikenella corrodens Edwardsiella tarda Edwardsiella tarda Enteric group 137 Enteric group 137 gergoviae pergoviae kobei mendocina mucidolens mendocina mucidolens mendocina mucidolens mendocina prinus pertucinogena fattae pertucinogena fattae putida facescillaria stutzeri vuineris veronii Elizabethkingia menigoseptica nuceaturn parainfluenzae fundera parainfluenzae fundera fundera Hafnia alvei fundera fundera Herbaspirilum futionza fundera fundera fundera servar Bareilly enterica subsp enterica servar Bareilly enterica subsp enterica servar Typhimurium fundera alvei fundera fonticola fu	Cronobacter	muytjensii		chloraphis		genitalium		schleiferi
Eikenella corrodens Edwardsiella tarda Edwardsiella tarda Enteric group 137 Enteric group 137 gergoviae pergoviae kobei mendocina mucidolens mendocina mucidolens mendocina mucidolens mendocina prinus pertucinogena fattae pertucinogena fattae putida facescillaria stutzeri vuineris veronii Elizabethkingia menigoseptica nuceaturn parainfluenzae fundera parainfluenzae fundera fundera Hafnia alvei fundera fundera Herbaspirilum futionza fundera fundera fundera servar Bareilly enterica subsp enterica servar Bareilly enterica subsp enterica servar Typhimurium fundera alvei fundera fonticola fu	Delftia	acidovorans		fragi	Corynebacterium	glutamicum	Streptococcus	agalactiae
Enteric group 137 Enteric group 137 gergoviae gergoviae mendocina urealyticum intermedius Enterobacter kobei mucidolens mucidolens mucidolens mucidolens perturinogena perturinogena peudoalcaligenes faecalis faecalis faeculum faeculum <t< td=""><td>Eikenella</td><td>corrodens</td><td></td><td>fulva</td><td></td><td>jeikeium</td><td>anginosus</td></t<>	Eikenella	corrodens		fulva		jeikeium		anginosus
gergoviae kobei pyrinusPseudomonasmendocina mucidolens nitroreducens petrucinogena pseudoalcaligenes putidaurealyticumintermedius pneumoniae progenesEscherichiaalbertii blattae fargusonii hermannii vulnerispseudoalcaligenes putida stutzeri veroniifaecalis faecalis faecalis faecalisfaecalis faecalis faecalis faecalisElizabethkingia wingella tamenicanaRaoultellaornithinolytica planticolafaecum planticolaFusobacterium harmophilus influenzae KingellaRaoultellaornitola planticolafinecola planticolaHerbaspirilum kingellaSerratiafonticola inderescens dudraferions complex inderescens adorferaFinegodia magna kitsinaeKluyvera kuyveraascorbata cryocrescensStenotrophorumas indicentephiliaStenotrophorumas indicentephiliaErysipelothrix rhusiopathiaeKluyvera kuyverascorbata cryocrescensStenotrophorumas indicentephiliaEnterococcus faecium faecium indicentephiliaKuyvera blateserovar Bareily influenzae kitesiellaStenotrophorumas indicentephiliaKluyvera blateStenotrophorumas indicentephiliaEnterococcus indicentephiliaKluyvera blateStenotrophorumas indicentephiliaEnterococcus indicentephiliaKluyvera blateStenotrophorumas indicentephiliaEnterococcus indicentephiliaKluyvera blateStenotrophorumas indicentephiliaCarmosum mesenteroidisKluyvera blate	Edwardsiella	tarda		fluorescens		renale		constellatus
gergoviae kobei pyrinusPseudomonasmendocina mucidolens nitroreducens petrucinogena pseudoalcaligenes putidaurealyticumintermedius pneumoniae progenesEscherichiaalbertii blattae fargusonii hermannii vulnerispseudoalcaligenes putida stutzeri veroniifaecalis faecalis faecalis faecalisfaecalis faecalis faecalis faecalisElizabethkingia wingella tamenicanaRaoultellaornithinolytica planticolafaecum planticolaFusobacterium harmophilus influenzae KingellaRaoultellaornitola planticolafinecola planticolaHerbaspirilum kingellaSerratiafonticola inderescens dudraferions complex inderescens adorferaFinegodia magna kitsinaeKluyvera kuyveraascorbata cryocrescensStenotrophorumas indicentephiliaStenotrophorumas indicentephiliaErysipelothrix rhusiopathiaeKluyvera kuyverascorbata cryocrescensStenotrophorumas indicentephiliaEnterococcus faecium faecium indicentephiliaKuyvera blateserovar Bareily influenzae kitesiellaStenotrophorumas indicentephiliaKluyvera blateStenotrophorumas indicentephiliaEnterococcus indicentephiliaKluyvera blateStenotrophorumas indicentephiliaEnterococcus indicentephiliaKluyvera blateStenotrophorumas indicentephiliaEnterococcus indicentephiliaKluyvera blateStenotrophorumas indicentephiliaCarmosum mesenteroidisKluyvera blate	Enteric group 137	Enteric group 137		luteola		striatum		equinus
Initerobacter kobei mucidolens pyrinus nitroreducens nitroreducens albertii pertucinogena durans battae pseudoalcaligenes durans fergusonii putida faecalis hermannii stuzeri faecalis vulneris veronii faecalis Elizabethkingia meningoseptica paniticola kwingella americana pogori Fusobacterium nucleatum bongori Hafnia alvei bongori Hafnia alvei faniticola parainfluenzae servar Bareilly enterica subsp enterica servar Bareilly enterica subsp enterica servar Typhimurium finegoldia magna Hafnia alvei fonticola parainfluenzae servar Typhimurium Kocuria kristinae Kupvera stenotrophomonas maltophilia cirspatus Kupvera ascorbata cyocrescens odorifera kupvera ascorbata cyocrescens marcescens uteuconostoc camosum <td< td=""><td rowspan="3">Enterobacter</td><td></td><td>mendocina</td><td>urealyticum</td><td>intermedius</td></td<>	Enterobacter			mendocina		urealyticum		intermedius
albertii pertucinogena pseudoalcaligenes putidapertucinogena pseudoalcaligenes putidaduransEscherichiafargusonii hermannii vulnerisputidafaecalishermannii vulnerisstutzeri veroniifaecalisElizabethkingia Ewingellameningoseptica americanaornithinolytica planticolafaecalisFusobacterium HafnianucleatumSalmonellaornithinolytica planticolahiraeFusobacterium Hafniaalveisalmonellaenterica subsp enterica serovar Barelily enterica subsp enterica serovar Typhimurium fonticolaErysipelothrixrhusiopathiaeHafnia Haemophilus Kingellainfluenzae parainfluenzae kingelaSerratiafonticolaKocuriakristinae rispatus rispatus rispatusKluyvera Kluyveraascorbata cryocrescensStenotrophomonas maltophiliaLeuconostoccarnosum mesenteroids		kobei		mucidolens		avium		pneumoniae
blattae fergusonii hermanniipseudoalcaligenes putidafaecalisbernanniiputidafaeciumhermanniistutzerivulnerisveroniiElizabethkingiameningoseptica americanaornithinolytica planticolaFusobacteriumnecrophorumFusobacteriumnecrophorumfusobacteriumnucleatumnucleatumSalmonellaenterica subsp enterica serovar Typhimuniumamericanaenterica subsp enterica serovar Typhimuniumfusobacteriumnucleatumfusobacteriumnucleatumhafniaalveialveifonticolaparainfluenzae KingellaseratiakingaeStenotrophomonasKluyveraascorbata cryocrescensKluyveraascorbata cryocrescenskuyveraascorbata cryocrescensblatteintu pseudoalcaligenes posudoalcaligenes posudoalcaligenes posudoalcaligenes posudoalcaligenes putidakuyverabolgori serovar Typhimiafuguspan kuyveraStenotrophomonasmarcescens cryocrescensactobata cryocrescensfuguspan cryocrescensStenotrophomonasfuguspan cryocrescensfuguspan marcescensfuguspan cryocrescensfuguspan marcescensfuguspan cryocrescensfuguspan marcescensfuguspan cryocrescensfuguspan marcescensfuguspan cryocrescensfuguspan marcescensfuguspan cryocrescensfuguspan mar		pyrinus		nitroreducens		casseliflavis		pyogenes
Escherichia fergusonii putida hermannii putida kermannii stutzeri vulneris veronii Elizabethkingia meningoseptica Ewingella americana americana ornithinolytica planticola planticola planticola mundtii Fusobacterium nucleatum serovar Bareilly enterica subsp enterica serovar Bareilly enterica subsp enterica serovar Typhimunium finegoldia Hafnia alvei influenzae serovar Typhimunium faetoscura fonticola kingella kingae kingella stutzeri kingella stutzeri kingella Stenotrophomonas Klebsiella varicola Kluyvera Stenotrophomonas Ruyvera ascorbata ryocrescens indeptilia		albertii		pertucinogena		durans		
IergusoniiputdaIaecumhermanniistutzerivulnerisstutzerivulnerisveroniiElizabethkingiameningosepticaEwingellaamericanaFusobacteriumnecrophorumFusobacteriumnucleatumNucleatumSalmonellaBaerophilusinfluenzaeparainfluenzaeSerratiaKingellakingaeVerophilumstructaiIntersejactophorumKingellastructaikingaeStructaiKuyveraascorbataKuyveraascorbataKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescensstructophorunasKuyveraascorbataCryocrescenscryocrescensCryocrescenscryocrescensCryocrescenscryocrescensCryocrescenscryocrescensCryocrescenscryocrescens <td></td> <td>blattae</td> <td rowspan="3"></td> <td>pseudoalcaligenes</td> <td rowspan="3">Enterococcus</td> <td>faecalis</td> <td></td> <td></td>		blattae		pseudoalcaligenes	Enterococcus	faecalis		
hermanniistutzerivulnerisstutzerivulnerisveroniiElizabethkingiameningosepticaamericanaRaoultellaFusobacteriumnecrophorumFusobacteriumnucleatumnucleatumSalmonellaFusobacteriumnucleatumHafniaalveialveienterica subsp enterica serovar BareillyHafniaalveifinduenzaefonticolaparainfluenzaeSerratiaKingellakingaeKlebsiellavariicolaKluyveraStenotrophorumasKluyveraascorbataCryocrescensStenotrophorumasKluyveraascorbataCryocrescensStenotrophorumasKluyveraascorbataCryocrescensStenotrophorumasKluyveraascorbataCryocrescensStenotrophorumasKluyveraascorbataCryocrescensStenotrophorumasKluyveraascorbataCryocrescens	Escherichia	fergusonii		putida		faecium		
Elizabethkingiameningoseptica americanaRaoultellaornithinolytica planticolaEwingellaamericanaPlanticolahiraeFusobacteriumnecrophorumbongoriraffinosusFusobacteriumnucleatumSalmonellaenterica subsp enterica serovar BareillyErysipelothrixrhusiopathiaeHafniaalveifonticolafonticolaFinegoldiamagnaHaemophilusinfluenzae parainfluenzaeSerratiafonticolafonticolaKocuriakristinaeKingellakingaeStenotrophomonasmaltophiliacrispatusacidophiluscrispatusKluyveraascorbata cryocrescensStenotrophomonasmaltophiliaLeuconostoccarmosumKluyveraascorbata cryocrescensfonticolaLeuconostoccarmosumKingellavariicolaStenotrophomonasmaltophiliafonticolaKluyveraascorbata cryocrescensfonticolacarmosumKuyveraascorbata cryocrescensfonticolafonticolaKluyverafonticolafonticolafonticolaKluyverafonticolafonticolafonticolaKluyverafonticolafonticolafonticolaKluyverafonticolafonticolafonticolaKluyverafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolafonticolafonticolafonticolafonticolafonticolafonticola		hermannii		stutzeri		flavescens		
EwingellaamericanaRaoultellaplanticolaFusobacteriumnecrophorumbongoriraffinosusFusobacteriumnucleatumSalmonellaenterica subsp enterica serovar BareillyErysipelothrixrhusiopathiaeHafniaalveiinfluenzaefonticolamagnaHaemophilusinfluenzaeSerratiafonticolaKocuriakristinaeHerbaspirillumhuttienseStenotrophomonasmaltophiliacrispatusKluyveraascorbataStenotrophomonasmaltophiliaLeuconostoccarnosumKluyveraascorbatafonticolaLeuconostoccarnosumKluyveraascorbatafonticolafonticolafonticolaKluyverakingaeStenotrophomonasmaltophiliaLeuconostoccarnosumKingellavariicolaStenotrophomonasmaltophiliaLeuconostoccarnosumKluyveraascorbatafonticolamasenteroidsfonticolaKluyverafonticolafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolaKluyverafonticolafonticolafonticolafonticolaKluyvera		vulneris		veronii		gallinarum		
EwingellaamericanaplanticolaFusobacteriumnecrophorumFusobacteriumnucleatumhundeatumSalmonellaHafniaalveiinfluenzaeenterica subsp enterica serovar BareillyhaemophilusinfluenzaeparainfluenzaefonticolaherbaspirillumhuttienseKingellaStenotrophorunasKluyveraascorbataKluyveraascorbataCryocrescensinterventionasParainfluenzaesenotrophorunasKluyveraStenotrophoronasmarcescensrhamnosusKluyveraascorbataCryocrescensinterventionasKluyveraascorbatacryocrescensinterventionascryocrescensinterventionaskluyveraascorbatacryocrescensinterventionascryocrescensinterventionaskluyveraascorbatacryocrescensinterventionaskluyveraascorbatacryocrescensinterventionaskluyveraascorbatacryocrescensinterventionascryocrescensinterventionaskluyteraascorbatacryocrescensinterventionaskluyteraascorbatacryocrescensinterventionaskluyteraascorbatacryocrescensinterventionaskluyteraascorbatacryocrescensinterventionascryocrescensinterventionascryocrescensinter	Elizabethkingia	meningoseptica		ornithinolytica		hirae		
FusobacteriumnecrophorumFusobacteriumnucleatumSalmonellabongori enterica subsp enterica serovar Bareilly enterica subsp enterica serovar TyphimuriumraffinosusHafniaalveiErysipelothrixrhusiopathiaeHaemophilusinfluenzae parainfluenzae parainfluenzaefonticolaKocuriaHerbaspirillumhuttienseSerratiafonticolaKocuriaKingellakingaeStenotrophomonasmaltophiliaKluyveraascorbata cryocrescensStenotrophomonasmaltophiliaKluyveraascorbata cryocrescensStenotrophomonasmaltophiliaLeuconostoccarnosum mesenteroids	Ewingella	americana	Raoultella	planticola		mundtii		
Passodatemin Indication Servar Bareilly Erysiperotinix Indicipatinae Hafnia alvei enterica subsp enterica servar Typhimurium Finegoldia magna Haemophilus influenzae fonticola Kocuria kristinae Herbaspirillum huttiense fonticola Kytococcus sedentarius Kingella kingae odorifera acidophilus crispatus Kluyvera ascorbata stenotrophomonas maltophilia Leuconostoc carnosum Kluyvera ascorbata foryocrescens formonomica maltophilia Leuconostoc carnosum Kluyvera ascorbata foryocrescens formonomica maltophilia formonomica	Fusobacterium	necrophorum		bongori		raffinosus		
Haina aver serovar Typhimurium Hagina Haemophilus influenzae fonticola kristinae parainfluenzae serratia liquefaciens complex Kytococcus sedentarius Herbaspirillum huttiense marcescens acidophilus Kingella kingae odorifera acidophilus Klebsiella variicola Stenotrophomonas maltophilia Kluyvera ascorbata cryocrescens Leuconostoc carnosum mesenteroids mesenteroids mesenteroids	Fusobacterium	nucleatum	Salmonella		Erysipelothrix	rhusiopathiae		
Indentifying parainfluenzae Serratia liquefaciens complex Kytococcus sedentarius Herbaspirillum huttiense marcescens acidophilus Kingella kingae odorifera tactobacillus crispatus Klebsiella variicola Stenotrophomonas maltophilia the constance carnosum Kluyvera ascorbata cryocrescens teuconostoc carnosum	Hafnia	alvei		enterica subsp enterica serovar Typhimurium	Finegoldia	magna		
Herbaspirillum huttiense marcescens Kingela kingae odorifera Klebsiella variicola Stenotrophomonas maltophilia Kluyvera ascorbata the constance cryocrescens the constance the constance	Haemophilus	influenzae	Serratia	fonticola	Kocuria	kristinae		
Kingella kingae odorifera Klebsiella variicola Stenotrophomonas maltophilia Kluyvera ascorbata cryocrescens Lactobacillus crispatus rhamnosus	,	parainfluenzae		liquefaciens complex	Kytococcus	sedentarius		
Kingelia Kingelia Kingelia Kingelia Crispatus Klebsiella variicola Stenotrophomonas maltophilia rhamnosus Kluyvera ascorbata Leuconostoc carnosum cryocrescens mesenteroids	Herbaspirillum	huttiense		marcescens	Lactobacillus	acidophilus		
Ascorbata Leuconostoc carnosum cryocrescens mesenteroids	Kingella	kingae		odorifera		crispatus		
Kluyvera cryocrescens mesenteroids	Klebsiella	variicola	Stenotrophomonas	maltophilia		rhamnosus		
Kluyvera cryocrescens mesenteroids	Kluyvera	ascorbata		•	Leuconostoc	carnosum	1	
georgiana		cryocrescens				mesenteroids	1	
		georgiana					1	

Table 26: Gram Negative Cocci Tested

Genus	Species	Genus
Moraxella	catarrhalis	
	lactamica	
Neisseria	mucosa	Candida
Nelssella	sicca	
	meningitidis	
Veillonella	parvula	Cryptococcus
		Saccharomyces

Table 27: Yeast Organisms Tested

GenusSpeciesalbicansglabrataKruseiparapsilosistropicalisCryptococcusneoformans*Saccharomycescerevisiae

*Genomic DNA Tested

F. Interfering Substances

The potential inhibitory effects of substances that may be encountered in blood and associated with the blood culturing process were tested with **BC-GN** at biologically or experimentally relevant concentrations. The interference testing was conducted by adding potential interferents present in patient blood specimens directly into blood cultures containing the bacterial strains and testing the resulting samples with **BC-GN**.

Representative strains, most with resistance markers, of *A. baumannii* (OXA), *C. freundii* (VIM), *E. cloacae* (KPC), *E. coli* (NDM), *K. pneumoniae* (OXA, CTX-M), *K. oxytoca* (CTX-M), *P. mirabilis*, and *P. aeruginosa* (IMP) were challenged with hemoglobin (14 g/L), triglycerides (3000 mg/dL), conjugated and unconjugated bilirubin (20 mg/dL), gamma-globulin (6 g/dL), and Sodium Polyanetholesulfonate (SPS, 0.25% w/v) at concentrations approximately one log higher than reference levels (except SPS). A negative control consisting of blood culture media was also tested. None of the added interferents were found to have an impact on the performance of **BC-GN**.

G. Carryover/Cross-Contamination Study

A study was performed using twelve Verigene Processor *SP* instruments to assess the potential for carryover/cross-contamination with **BC-GN** by alternately running "high positive" samples followed by negative samples. Representative strains, several with resistance markers, of *A. baumannii* (OXA), *C. freundii* (VIM), *C. sedlakii, C. koseri, E. cloacae* (KPC), *E. aerogenes, E. coli* (NDM), *K. pneumoniae* (CTX-M, OXA), *K. oxytoca, P. mirabilis*, and *P. aeruginosa* (IMP) were used to prepare the high positive samples. All of the high positive samples yielded the expected "Detected" results for the intended bacteria and "Not Detected" results for the other analytes. The negative samples gave a 'Not Detected" call for all analytes. The studies confirmed that there was no evidence of carryover/cross-contamination from the high positive samples, or any other internal or external sources.

H. Universal Blood Culture Bottle Validation

The performance of **BC-GN** was evaluated for thirteen (13) types of blood culture media using three different automated blood culture monitoring systems (see listing of culture bottles tested below). This evaluation demonstrated that **BC-GN** performed appropriately when target organisms grew to a sufficient concentration in the various bottle types and that the bacterial DNA is sufficiently stable over 36 hours once bottle positivity has been reached. Three organisms, however, did not grow in all of the bottles tested. Expectedly, *A. baumannii* and *P. aeruginosa* did not grow in any of the anaerobic bottles, as these two organisms are obligate aerobes. Since these observations are related to the ability of the organisms to grow in specific blood culture bottles, they do not reflect on the performance of **BC-GN**. Furthermore, *A. baumannii* repeatedly did not grow in one aerobic bottle (VersaTREK REDOX 1 EZ Draw /Aerobic); therefore, the performance of BCGN for this organism in this bottle is unknown.

BACTEC [™]	BacT/ALERT®	VersaTREK®
Plus/Aerobic/F	SA Standard Aerobic	REDOX 1 EZ Draw [®] Aerobic
Plus/Anaerobic/F	FA FAN Aerobic	REDOX 2 EZ Draw [®] Anaerobic
Standard/10 Aerobic/F	PF Pediatric FAN	
Peds Plus/F	SN Anaerobic	
Standard Anaerobic/F	FN FAN [®] Anaerobic	
Lytic/10 Anaerobic/F		

Representative **BC-GN** bacterial organisms (all eight bacteria and six resistance markers) were inoculated into each of the different bottle types which were spiked with anti-coagulated human whole blood. A total of 1062 **BC-GN** tests were performed in the study, with an overall call accuracy of 99.8%, due to the observation of two OXA false negative results with *A. baumannii* using the BACTEC Standard Aerobic/F bottles. These false negative results were not attributable to the BACTEC Standard Aerobic/F bottle in which the organism was grown, but due to a limitation of **BC-GN** whereby in rare instances the organism may be detected but not the resistance marker. Therefore, with the exceptions noted, the results demonstrated that these thirteen (13) blood culture bottles are appropriate for use with **BC-GN** and that specimens are stable in those bottles at refrigerated (2-8 °C), ambient (18-24 °C), and culture system (34-37 °C) storage conditions for up to 36 hours after reaching bottle positivity

I. Competitive Inhibition/ Mixed Cultures

A competitive inhibition study was conducted to evaluate the impact of mixed cultures on **BC-GN** performance. Combinations of eight organisms with resistance markers representing the **BC-GN** panel targets (for a total of 28 paired combinations) were co-inoculated into individual blood culture bottles at clinically-relevant starting concentrations, and incubated to positivity. **BC-GN** correctly detected the bacteria and resistance marker(s) for four of the eight (8) target organisms together with their associated resistance marker, irrespective of combination, present in co-inoculated blood culture bottles (*A. baumannii*/OXA, *C. freundii*/VIM, *K. pneumoniae*/OXA and CTX-M, and *P. mirabilis*), demonstrating that these organisms are not subject to competitive inhibition at concentrations expected in routine clinical practice. For the remaining four organisms, at least one of the expected bacterial or resistance marker targets was not detected. This was faster growing organisms may reach a higher concentration at bottle positivity compared with a slower growing organism. This may lead to slower-growing organism concentrations that are below the limit of detection of the test.

A second competitive inhibition study was conducted to further evaluate representative combinations of the four (4) organisms for which at least one false negative result was observed during the first study. This involved retesting nine (9) specific organism combinations:

Primary Organism	Secondary Organism	Combination No.	
E. coli (NDM)	K. pneumoniae (CTX-M/OXA) 1		
	A. baumanii (OXA)	2	
K overtooo (CTX M)	E. coli (NDM)	3	
K. oxytoca (CTX-M)	K. pneumoniae (CTX-M/OXA)	4	
	P. mirabilis	5	
	A. baumanii (OXA)	6	
P. aeruginosa (IMP)	E. cloacae (KPC)	7	
F. aeruginosa (IMF)	E. coli (NDM)	8	
	K. oxytoca (CTX-M)	9	

This study was designed to confirm whether false negative results observed with these combinations were due to the slower growth rates of the undetected organisms relative to the detected organisms. Growth rate was eliminated as an experimental variable by testing mixed culture organisms at "bottle positivity" concentrations and above the LOD for each organism. Of the nine (9) combinations, eight (8) yielded expected calls. For one combination, *K. oxytoca*/CTX-M and *E. coli*/NDM, the *K. oxytoca* target was detected at a rate of 78% (7/9); and 100% detection was observed for the other three (3) targets in this sample (*E. coli*, NDM, and CTX-M). This demonstrated that except in one instance, growth rate, not competitive inhibition was a contributing factor to the initial observed false negative results.

CONTACT INFORMATION

In the United States:

Nanosphere, Inc. 4088 Commercial Avenue Northbrook, IL 60062 Customer and Technical Service: 1-888-VERIGENE (837-4436)

TEST KIT LABELING

The contents of a Test Kit may use EN 980 graphical symbols. The symbols are defined below.

Rx Only	Caution: Federal Law restricts this device to sale by or on the order of a licensed practitioner
REF	Catalog number
	Use by YYYY-MM-DD
LOT	Batch code
SN	Serial number
IVD	In vitro diagnostic medical device
<u></u>	Manufacturer
K	Upper Limit – Temperature limitation
↓	Upper and Lower Limit – Temperature limitation
Ĭ	Consult instructions for use
KEY-CODE	Key-code; Use this key-code to obtain instructions for use at <u>www.e-labeling.eu</u>
Xn	Harmful
F	Flammable

PATENTS AND TRADEMARKS

The Verigene[®] Reader may be protected by US patent 7,110,585 and other pending US and foreign patent applications. The Verigene[®] Processor *SP* may be protected by US patents 7,396,677 and 7,625,746, and other pending US and foreign patent applications. The Verigene[®] Test Cartridge and/or its method of use may be protected by one or more of the following US patents: 6,506,564; 6,602,669; 6,645,721; 6,673,548; 6,720,147; 6,750,016; 6,759,199; 6,812,334; 6,818,753, 6,903,207; 6,986,989; 7,321,829; 7,695,952; 7,773,790; 8,323,888; and their foreign counterparts.

Methods for analysis of results by the Verigene Reader are made possible under license of US Patent Nos. 5,599,668 and 5,843,651 owned by Abbott Laboratories.

Verigene[®] and the Nanosphere Logo are registered trademarks of Nanosphere, Inc.

Copyright ©2014 Nanosphere, Inc. All rights reserved.

NOTICE TO RECIPIENTS ABOUT LIMITED LICENSE OR RELATED

The receipt of this product from Nanosphere, Inc. or its authorized distributor includes limited, non-exclusive license under patent rights held by Nanosphere, Inc. Such license is solely for the purposes of using this product to perform the proprietary nucleic acid analysis method for which it was intended from Nanosphere, Inc. or its authorized distributor. For avoidance of doubt, the foregoing license does not include rights to use this product for agriculture or veterinary medicine applications. Except as expressly provided in this paragraph, no other license is granted expressly, impliedly, or by estoppel.

LIMITED PRODUCT WARRANTY

Nanosphere, Inc. warrants that this product will meet the specifications stated on the product information sheet. If any component of this product does not conform to these specifications, Nanosphere, Inc. will at its sole discretion, as its sole and exclusive liability and as the users sole and exclusive remedy, replace the product at no charge or refund the cost of the product; provided that notice of nonconformance is given to Nanosphere, Inc. within sixty (60) days of receipt of the product.

This warranty limits Nanosphere, Inc. liability to the replacement of this product or refund of the cost of the product. NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGMENT, ARE PROVIDED BY NANOSPHERE, INC. Nanosphere, Inc. shall have no liability for any direct, indirect, consequential or incidental damages arising out of the use, the results of use or the inability to use this product and its components.

REFERENCES

- 1. Rahal J. (2006). Novel antibiotic combinations against infections with almost completely resistant *Pseudomonas aeruginosa* and *Acinetobacter* species. *Clin Infect Dis* 43 Suppl 2: S95-9.
- 2. Perez, F., Hujer, A.M., Hujer, K.M., Decker, B.K., Rather, P.N. and Bonomo, R.A. (2007). Global challenge of multidrug-resistant *Acinetobacter baumannii*, *Antimicrob Agents Chemother* 51(10):3471-3484.
- 3. Mugnier, P.D., Poirel, L., Naas, T. and Nordmann, P. (2010). Worldwide Dissemination of the *bla*_{OXA23} carbapenemase gene of *Acientobacter baumannii*, *Emerg Infect Dis 16*(1):35-40.
- 4. Robledo, I.E., Aquino, E.E., Sante, M.I., Santana, J.L., Otero, D.M., Leon, C.F. and Vazquez, G.J. (2010). Detection of KPC in *Acinetobacter* spp. in Puerto Rico, *Antimicrob Agents Chemother* 54(3):1354-1357.
- 5. Lipsky B.A., Hook III, E.W., Smith, A.A., Plorde, J.J. (1980). Citrobacter infections in humans: Experience at the Seattle Veterans Administration Medical Center and a review of the literature. *Rev Infect Dis* 2(5):746-760.
- Shahid, M. (2010), *Citrobacter* spp. simultaneously harboring *bla*_{CTX-M}, *bla*_{TEM}, *bla*_{SHV}, *bla*_{ampC}, and insertion sequences IS26 and *orf*513: an evolutionary phenomenon of recent concern for antibiotic resistance. *J Clin Micro 48*(5):1833-1838.
- Zhang, R., Yang, L., Cai, J.C., Zhou, H.W. and Chen, G-X. (2008), High-level carbapenem resistance in a *Citrobacter freundii* clinical isolate is due to a combination of KPC-2 production and decreased porin expression, *J Medical Micro* 57:332-337.
- 8. Chen, L.F., Anderson, D.J. and Paterson, D.L. (2012). Overview of the epidemiology and the threat of *Klebsiella* pneumoniae carbapenemases (KPC) resistance. *Infection and Drug Resistance 5*:133–141.
- Rasheed, J.K., Biddle, J.W., Anderson, K.F., Washer, L., Chenoweth, C., Perrin, J., Newton, D.W. and Patel, J.B. (2008). Detection of the *Klebsiella pneumoniae* carbapenemase type 2 carbapenem-hydrolyzing enzyme in clinical ilsolates of *Citrobacter freundii* and *K. oxytoca* carrying a common plasmid. *J Clin Micro* 46(6):2066-2069.
- Marchaim, D., Navon-Venezia, S., Schwaber, M.J. and Carmeli, Y. (2008). Isolation of Imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes, Antimicrob Agents Chemother 52(4):1413-1418.
- 11. Biendo, M., Canarelli, B., Thomas, D., Rousseau, F., Hamdad, F., Adjide, C., Laurans, G. and Eb, F. (2008) Successive emergence of extended-spectrum B-lactamase-producing and carbapenemase-producing *Enterobacter aerogenes* isolates in a university hospital. *J Clin Micro* 46(3):1037-1044.
- 12. Tibbetts, R., Frye, J.G., Marschall, J., Warren, D. and Dunne, W. (2008). Detection of KPC-2 in a clinical isolate of *Proteus mirabilis* and first reported description of carbapenemase resistance caused by a KPC beta-lactamase in *P. mirabilis*, J Clin Micro 46(9):3080-3083.
- 13. Ibrahim, E.H., Sherman, G., Ward, S., Fraser, V.J., Kollef, M.H. (2000). The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. *Chest 118*(1): 146-55.
- 14. Todar, K. Pathogenic *E. coli. Online Textbook of Bacteriology.* University of Wisconsin—Madison Department of Bacteriology. Retrieved 02-07-2013 from http://www.textbookofbacteriology.net/.
- Lledo, W., Hernandez, M., Lopez, E., et al. (2009) Guidance for control of infections with carbapenem-resistant or carbapenemase-producing "*Enterobacteriaceae*" in acute care facilities. *MMWR 58*(10); 256-260. Retrieved 02-07-13 from <u>http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5810a4.htm.</u>
- 16. Sahly, H. and Podschun, R. (1997). Clinical, bacteriological, and serological aspects of *Klebsiella* infections and their spondylarthropathic sequelae. *Clinical and Diagnostic Laboratory Immunology 4*(4):393-399.
- Viedma, E., Juan, C., Villa, J., Barrado, L., Orellana, M.A., Sanz, F., Otero, J.R., Oliver, A and Chaves, F. (2012). VIM-2–producing multidrug-resistant *Pseudomonas aeruginosa* ST175 Clone, Spain, *Emerg Infect Dis, 18*(8):1235-1241.
- 18. Auwaerter, P. Serratia species. Point-of-Care Information Technology ABX Guide. John's Hopkins University.
- 19. Slama, T.G. (2008). Gram-negative antibiotic resistance: there is a price to pay. Critical Care 12(Suppl 4):S4.
- 20. Rossolini, G.M., D'Andrea, M.M. and Mugnaioli, C. (2008). The spread of CTX-M-type extended-spectrum betalactamases, *Clin Microbiol Inf 14* Suppl 1:33-41.
- Livermore, D.M., Canton, R., Gniadkowski, M., Nordmann, P., Rossolini, G.M., Arlet, G., Ayala, J., Coque, T.M., Kern-Zdanowicz, I., Luzzaro, F., Poirel, L. and Woodford, N. (2007) CTX-M: changing the face of ESBLs in Europe, J Antimicrob Chemother 59:165-174
- 22. Hoenigl, M. et al. (2012). Nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Klebsiella oxytoca in Austria, Antimicrobial Agents and Chemotherapy 56(4):2158-2161.

- 23. Cai, J.C., Zhou, H.W., Zhang, R. and Chen, G-X. (2008) Emergence of *Serratia marcescens, Klebsiella pneumoniae*, and *Escherichia coli* isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in iIntensive care units of a Chinese hospital. *Antimicrobial Agents and Chemotherapy* 52(6):2014-2018.
- 24. Livermore, D.M. (2012) Current epidemiology and growing resistance of gram-negative pathogens, *Korean J Intern Med* 27:128-142.
- 25. Caratolli, A. (2009) Resistance plasmid families in *Enterobacteriaceae*. *Antimicrobial Agents and Chemotherapy* 53(6): 2227–2238.
- Nordmann, P., Poirel, L., Walsh, T.R. and Livermore, D.M. (2011). The emerging NDM carbapenemases, *Trends Microbiol* 19(12):588-95.
- 27. Johnson, A.P. and Woodford, N. (2013). Global spread of antibiotic resistance: the example of New Delhi metallo-βlactamase (NDM)-mediated carbapenem resistance. *J Med Microbiol.* Jan 17 (PMID: 23329317).
- 28. Shakil, S., Azhar, E.I., Tabrez, S., Kamal M.A., Jabir, N.R., Abuzenadah, A.M., Damanhouri, G.A. and Alam, Q. (2011). New Delhi metallo-β-lactamase (NDM-1): an update, *J Chemother.* 23(5):263-5.
- 29. Walther-Rasmussen, J. & Hoiby, N. (2006). OXA-type carbapenemases, J Antimicrob Chemother 57:373-383.
- 30. Nordmann, P., Naas, T., and Poirel, L. (2011). Global spread of carbapenemase-producing *Enterobacteriaceae*. *Emerg. Infect Dis* 17(10):1791-1798.
- 31. Poirel, L., Naas, T. and Nordmann, P. (2010) Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother. *54*(1):24-38